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SUMMARY

The Kelvin-Helmholtz roll-up of three-dimensional, temporally evolving, plane mixing layers has

been simulated numerically. All simulations were begun from a few low-wavenumber disturbances,

usually derived from linear stability theory, in addition to the mean velocity profile. The spanwise

disturbance wavelength was taken to be less than or equal to the streamwise wavelength associated with

the Kelvin-Helmholtz roll-up. A standard set of "clean" structures develop in most of the simulations.

The spanwise vorticity rolls up into a corrugated spanwise roller, with vortex stretching creating strong

spanwise vorticity in a cup-shaped region at the bends of the roller. Predominantly streamwise rib

vortices develop in the braid region between the rollers. For sufficiently strong initial three-dimensional

disturbances, these ribs "collapse" into compact axisymmetric vortices. The rib vortex lines connect

to neighboring ribs and are kinked in the opposite direction of the roller vortex lines. Because of

this, these two sets of vortex lines remain distinct. For certain initial conditions, persistent ribs do not

develop. In such cases the development of significant three-dimensionality is delayed. When the initial

three-dimensional disturbance energy is about equal to, or less than, the two-dimensional fundamental

disturbance energy, the evolution of the three-dimensional disturbance is nearly linear (with respect

to the mean and the two-dimensional disturbances), at least until the first Kelvin-Helmholtz roll-up

is completed. This includes cases in which the three-dimensional disturbance is strong enough to

result in "collapsed" rib vortices of the type visualized in experiments. Because of this, the evolution

of infinitesimal three-dimensional perturbations on the developing two-dimensional base flow contains

many of the same features present in the full three-dimensional simulations. Nonlinear effects are

important in the rib collapse process, in the generation of the strong cup vorticity at the bends of the

roller, and late in the flow evolution after the two-dimensional modes have saturated. The appearance

of collapsed rib vortices and strong cup vorticity will be shown in Part 2 of this report (to be published

as a NASA TM) to be the first step in the transition to turbulence.

1 INTRODUCTION

The mixing layer that forms between two fluid streams moving with different velocities is an

important model problem for the study of turbulence in free shear layers. It is particularly interesting in

the context of scalar mixing and chemical reaction since many practical chemically reacting flows are

free shear flows. However, here we are concerned with the hydrodynamic evolution of an incompressible

plane mixing layer in the belief that a thorough understanding of the hydrodynamics is a prerequisite

to the study of scalar mixing in such a flow.

1.1 Experimental Observations

A variety of experimental studies have shown that the spatially developing mixing layer starting

at the trailing edge of a splitter:plate between two streams is dominated by large, predominantly two-

dimensional, spanwise vortex structures that arise from the Kelvin-Helmholtz instability of the layer.

These two-dimensional structures have been observed even at very high Reynolds numbers in fully

turbulent mixing layers (Brown and Roshko 1971, 1974). Dye visualizations in water by Winant and

Browand (1974) demonstrated that the spreading of the mixing layer was due primarily to pairing, the co-

rotation and merging of individual spanwise vortices created by the initial Kelvin-Helmholtz instability



or by previouspairings. This mechanismis consistentwith the amalgamationprocessobservedby
Brown andRoshko(1974)at muchhigherReynoldsnumbers.

The universalityof theBrown-Roshkostructureshasoftenbeenquestioned.Indeed,in moretur-
bulentenvironments,mixing-layerevolutioncanbeapparentlymorecomplex.Smokevisualizationsby
Chandrsudaet al. (1978)indicatedthat morecomplexpairingprocesseswith significantspanwisevaria-
tion canalsooccur,leadingto "helical" patterns.Also, dislocationsin anotherwisetwo-dimensionalar-
rayof spanwiserollers(BrowandandTroutt 1980)andhighly three-dimensionalroller vortices(Nygaard
andGlezer1990)havebeenobserved.

Planviewsof turbulentmixing layersby BrownandRoshko(1974),Konrad(1976),andBreidenthal
(1981) indicatedthat a streamwisestreakystructurecoexistedwith thepredominantlytwo-dimensional
spanwiserollers. Furtherinvestigationof thestructuresby Bernal (1981)andBernalandRoshko(1986)
confirmedthat thesestreakswere due to pairs of counterrotating,predominantlystreamwisevortices
(called "ribs," following Hussain(1983)) that form in the so-calledbraid region betweenthe span-
wise rollers. Examinationof planesnormalto the flow directionby laser-inducedfluorescenceshowed
mushroom-shapedpatternsresultingfrom theinducedmotionof thestreamwisevortexpairs.Thespan-
wise locationof thesestreamwisevorticeshasbeenfound to correlatewith upstreamdisturbancesin
the experimentalfacility (Jimenez1983;Bernaland Roshko1986;Bell and Mehta 1989a).However,
beyonda certaindownstreamlocationa reorganizationmay occur, increasingthe characteristicspan-
wise spacingbetween"streaks" and apparentlyuncouplingthem from the inlet disturbances(Bernal
and Roshko 1986). The circulation of the streamwiserib vorticeswas estimatedby Jimenez(1983)
and by Bell and Mehta (1990). Remarkably,they found similar valuesof this circulation during the
early developmentof the layer (0.11-'zand0.07Fz,respectively,whereFz is the initial spanwise roller

circulation).

There have been many recent efforts to study the origin and behavior of the basic structures present

in the turbulent mixing layer. Many of these studies have concentrated on the development of three-

dimensionality in an essentially laminar mixing layer as a simplified model of mechanisms that may

exist in the turbulent case. Since most spatially developing mixing layers are only convectively unstable

(Huerre and Monkewitz 1985), they are sensitive to inlet conditions. Several studies have tried to

control inlet conditions through forcing (e.g., Ho and Huang 1982; Nygaard and Glezer 1991, Evolution

of Streamwise Vortices and Generation of Small-Scale Motion in a Plane Mixing Layer, J. Fluid Mech.,

in press) or through modification of the splitter-plate (e.g., the corrugated and serrated trailing edges of

Lasheras and Choi (1988)). These experiments are typically done in water at low Reynolds numbers and

produce "clean," well-ordered structures. Lasheras, Cho and Maxworthy (1986) and Lasheras and Choi

(1988) used extensive flow visualization of such clean flows to study the evolution of the streamwise

vortices. Their study examines the Kelvin-Helmholtz roll-up into spanwise rollers and the associated

streamwise vortex evolution up to the first pairing, beyond which the flow field becomes too complex

for their flow-visualization method. In a related investigation at much higher Reynolds number, Huang

and Ho (1990) carefully studied the streamwise vortices with the goal of understanding the transition
to "random small-scale turbulence."
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1.2 Theoretical and Computational Observations

The linear stability of mixing-layer velocity profiles (usually hyperbolic tangent or error function)

has been well documented (Michalke 1964; Monkewitz and Huerre 1982; Huerre and Monkewitz 1985).

Kelly (1967) and Pierrehumbert and Widnall (1982) found a two-dimensional secondary instability that

leads to pairing as observed by Winant and Browand (1974). Recognizing the importance of predicting

the instabilities of the two-dimensional Kelvin-Helmholtz rollers to the onset of three-dimensionality,

Pierrehumbert and Widnall (1982) used linear theory to examine instabilities of a periodic array of

Stuart (1967) vortices. The Stuart vortices, which are solutions to the incompressible Euler equations,

provide a reasonable approximation to real mixing layers for certain values of a free parameter. The

analysis of Pierrehumbert and Widnall (1982) shows that such an array of vortices is unstable to various

three-dimensional disturbances, as well as to the subharmonic pairing disturbance mentioned above.

They used the term "translative instability" to describe the instability arising from a three-dimensional

disturbance that has the same streamwise wavelength as the two-dimensional fundamental. They also

hypothesized that oblique disturbances with the same wavelength as the two-dimensional subharmonic

could lead to "helical" pairing. The most unstable spanwise wavelength for their translative instability

is two thirds the separation between Kelvin-Helmholtz rollers. However, the growth rate as a function

of spanwise wavelength has a broad peak. Corcos and Lin (1984) extended this analysis by studying the

three-dimensional instabilities of an evolving two-dimensional base flow, this base flow being computed

numerically. Their findings are similar to those of Pierrehumbert and Widnall (1982) in that they predict

a wide range of unstable spanwise disturbances.

In another study of three-dimensionality in a mixing layer, Lin and Corcos (1984) computed the

behavior of a vortex array being stretched along its axis by a plane strain. This two-dimensional

problem is expected to be a good model of the rib vortices in the braid region of the mixing layer,

once the Kelvin-Helmholtz roll-up is substantially complete and the braid region has been depleted of

spanwise vorticity. This model problem was also attacked analytically by Neu (1984). They found

that if the circulation associated with the streamwise rib vortices is large enough (relative to their

spanwise spacing and viscosity, see sec. 4.3.1), the streamwise vorticity in the braid region collapses

into a compact, roughly axisymmetric vortex. They also showed that it is such collapsed vortices that

are responsible for the "streaks" and mushroom shapes observed in the flow-visualization experiments

described above. Pullin and Jacobs (1986) simulated the same flow using the contour-dynamics method

and found "tertiary instabilities" of the collapsing rib vortices.

Although many numerical studies of the two-dimensional plane mixing layer have been undertaken

(e.g., Acton 1976; Patnaik, Sherman, and Corcos 1976; Riley and Metcalfe 1980; Corcos and Sherman

1984), few three-dimensional simulations are available because of their computational expense. Such

simulations are usually of time-developing mixing layers rather than the spatially developing mixing

layers common in experiments (see sec. 2.1). Pioneering three-dimensional large-eddy simulations of

initially turbulent mixing layers were performed by Mansour, Ferziger, and Reynolds (1978) and by

Cain, Reynolds, and Ferziger (1981). Spanwise rollers and evidence of rib vortices were observed in

both these studies. Mansour, Ferziger, and Reynolds also found that their computed flow fields more

closely resembled experimental results when two-dimensional rollers were included in the initial condi-

tions. Riley and Metcalfe (1980) used direct numerical simulation to simulate a few three-dimensional

mixing layers through the first roll-up, in addition to the two-dimensional cases mentioned above. They



comparedcasesbegunfrom "turbulent" initial conditionswith botha laminarroll-up andwith "turbu-
lent" casesthat were"forced" by anadditionaltwo-dimensionalfundamentaldisturbance.Resultswere
found to be in agreementwith laboratoryexperimentson forcedmixing layers.

In recentwork by Metcalfe et al. (1987), three-dimensionalnumericalsimulationswere usedto
addressmany issuesof mixing-layer instabilityaswell asto simulateseveralthree-dimensionallayers
begunfrom "turbulent" initial conditions.Thesesimulatedfieldscontainmany featuresfound in exper-
imental flow visualizations.In particular,thepredominantlystreamwiserib vorticesare found in their
computationsstartedboth from controlledand "turbulent" initial conditions. In the "turbulent" cases,
either two-dimensionaleigenfunctionswere addedto the randominitial conditions,or the initial fluc-
tuating energywasvery small to allow the mostunstabletwo-dimensionalmodeto dominatethrough
a long linear development. In either case,the effect was the sameas the explicit two-dimensional
rollers addedto the simulationsof Mansour,Ferziger,andReynoldsand the "forcing" usedby Riley
andMetcalfe.

The moredifficult computationaltask of simulatingspatiallyevolving shearlayers(seesec.2.1)
wasundertakenby Lowery and Reynolds(1986)andby Buell andMansour(1989a,1989b).Someof
thesimulationsbyLowery andReynoldsweremadewith "turbulent" inlet conditions.Thesesimulations
havebeenusedto isolatetwo-dimensional,spatiallydevelopingeffectslike thephasedecorrelationof
a forcedmixing layer after the first pairing (Ho et al. 1988),and for detailedcomparisonof spatially
and temporallyevolving mixing layers (seesec.2.1, and Buell, Moser,andRogers,to bepublished).
The greaterdifficulty of spatiallydevelopingmixing layer simulationshas limited thesestudiesto low
Reynoldsnumbers.

The computationsdescribedaboveusedprimarily spectralmethodsin Eulerianreferenceframes.
An alternativemeansof simulatingthree-dimensionalmixing layerswasusedby AshurstandMeiburg
(1988). They examinedthe developmentof an inviscid mixing layer by discretizingthe vorticity field
into vortex filamentsand trackingthe evolution of thesefilamentsnumerically. This is an attractive
approachfor themixing layer,becausemostof theearlydevelopmentis drivenby inviscidmechanisms.
Their computationsreproducedthe experimentallyobservedrib vorticesand indicatedthat the roller is
only mildly three-dimensional.

1.3 Unanswered Questions

Despite the extensive research that has been directed at the plane mixing layer in the past 20 years,

many important unanswered questions remain; some of them are described below. Of particular interest

in the current work is the early development of the mixing layer. Although the "standard" structures

(rib vortices and spanwise rollers) have been observed in many experimental and numerical studies, the

details of these structures and how they interact are not known. For example, the way in which the

rib vortices are connected to the spanwise rollers has been a matter of great speculation (Hussain 1983;

Bernal and Roshko 1986). Also, the degree to which the spanwise roller becomes three-dimensional

and how this three-dimensionality occurs is not well understood. Virtually nothing is known about the

evolution of the three-dimensional ribs and rollers during a pairing. Moreover, the mechanism by which

a laminar mixing layer ultimately becomes turbulent has not been determined.



Anothermatterof concernis theapparentcontradictionbetweentheknownsensitivityof themixing
layer to inlet or initial conditions,and the experimentalandnumericalobservationsof a standardset
of structures.This has led to the speculationthat experimentalfacilities may havesimilar disturbance
environments.However,alternativeflow developmentshave beenidentified (e.g.,Chandrsudaet al.
1978;BrowandandTroutt 1980),andthe extentto which thestandardstructuresarerobustto changes
in inlet conditionsis not known.

Therehas also beendisagreementas to whether the "secondaryinstability," which leadsto the
formationof rib vorticesandthree-dimensionality,is a "core instability" or a "braid instability." Some
investigators,such as Nygaardand Glezer (1990), view the ribs as a consequenceof the bending
roller core. Others, suchas Ashurst and Meiburg (1988),Lasherasand Choi (1988), and Bell and
Mehta (1989b),concludethat the ribs arisefrom a braid region instability relatedto the mechanism
investigatedby Lin andCorcos(1984).

The work describedhere and in Part 2 of this report (to be publishedas a NASA TM) was
undertakento addressthesequestions. In this paper,we investigatethe initial roll-up of the mixing
layerandthedevelopmentof three-dimensionality.In Part2, theeffectsof pairingandthe transitionto
turbulenceareexamined.Somepreliminaryresultsof this studyhave appearedin RogersandMoser
(1989)andMoserandRogers(1991).

1.4 Current Approach

The primary tool we have applied to the problems outlined above is direct numerical simulation of

the time-developing mixing layer. Numerical simulation has two overwhelming advantages in addressing

the questions outlined above. First, the initial (inlet) conditions can be precisely specified, and second,

the simulations provide a complete description of the flow field at any time, including velocity and

vorticity at all spatial locations.

All of the numerical simulations described both in this paper and in Part 2 were begun from simple

low-wavenumber disturbances to the mean profile. They are thus necessarily "clean" initially. It is

expected that a thorough understanding of the vortex dynamics of such clean flows will enable one

to understand the development of mixing layers in the more general case of uncontrolled disturbances.

These flows may be considered to be "deterministic models" of mixing layer development, similar to the

work of Corcos and Sherman (1984), Corcos and Lin (1984), and Lin and Corcos (1984). Despite the

initially clean nature of these simulated mixing layers (i.e., near the splitter-plate) the flows ultimately

become quite complex and in some cases (discussed in Part 2) undergo a transition to turbulence. In

such cases the origins of the post-transition flow structures can no longer be traced back to their pre-

transition counterparts. Presumably, at this point the exact nature of the initial/inlet condition is largely
irrelevant.

It is impossible to explore the entire infinite-dimensional space of possible initial conditions. There-

fore, the selection of initial conditions must be guided by their relevance to experimental flows. Initial

conditions for the baseline simulations reported here (secs. 3.2 and 4.2) were chosen to correspond

to the types of disturbances that are expected in experimental mixing-layer facilities. In this way, a

simple computational model of the evolution of a typical mixing layer can be developed. In particular,



it is expectedthat the trailing edgeof the splitter-platewill promotepredominantlytwo-dimensional
disturbances(Ho and Huerre1984),andsuchdisturbancesareincludedin the initial conditions.Also,
wind-tunnelimperfectionsareexpectedto introducestreamwisevorticity into thesplitter-plateboundary
layers (Jimenez1983;Bernal and Roshko 1986). This is modeledin our initial conditionsas initial
streamwise-invariantvorticity disturbances.Linear theory is usedto determinethe disturbancewave-
lengths,and in manycaseslineareigenfunctionsareusedfor the functional form of the disturbances.
Unfortunately,sincethe inlet conditionsof experimentalmixing layersaregenerallynot documented,
theonly measureof our successin modelingexperimentalconditionsis thequalitativeagreementof the
computedflow structureswith thoseobservedexperimentally.

Otherinitial conditionswerealsousedto explorethesensitivityof theresultingstructures.Included
in the sensitivitystudyarethe amplitude,phase,wavenumber,andfunctionalform of the disturbances.
In addition,different typesof three-dimensionaldisturbances,includingobliquemodes,were studied.
A few of the simulations performed as part of the sensitivity study result in flow developments that are

radically different from the rest.

All the simulations described here and in Part 2 have limited spanwise-domain extents (up to one

streamwise instability wavelength here, and up to 2.4 wavelengths in Part 2). This is because the simu-

lations were designed to study the standard structures and their variants, which have a relatively narrow

spanwise extent. We do not examine long-spanwise-wavelength phenomena such as the dislocations

studied by Browand and Troutt (1980), slow spanwise variations of the mean profile (Rogers et al.

1988), spanwise variation of the phase of the fundamental disturbance (Nygaard and Glezer 1990) or

the possible "helical" pairing studied by Chandrsuda et al. (1978). 1

In section 2 some background information on the simulations and numerical method is presented.

Results from two-dimensional simulations of plane mixing layers are given in section 3, the evolution of

a variety of three-dimensional mixing layers is described in detail in section 4, summary and discussion

appear in section 5, and brief conclusions are given in section 6.

Much of this work was begun in collaboration with visiting scientists at the 1988 Center for

Turbulence Research Summer School Program. In particular, we are grateful for discussions with

Professors C.-M. Ho, E Hussain, and J. Riley. In addition, we have benefited from comparisons with

the spatially developing mixing-layer work of Dr. J. Buell and the compressible shear layer work of

Prof. S. K. Lele, and from Prof. E. Broadwell's vast experience with experimental mixing layers.

Helpful comments provided by Dr. N. Mansour on a draft of this paper are also appreciated. Some of

the computations were performed on the NAS supercomputers at Ames Research Center.

1Note, however, that Part 2 does include simulations with disturbances of the type that Pierrehumbert and Widnall (1982)

felt could lead to helical pairing.
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2 PRELIMINARIES

2.1 The Temporally Evolving Plane Mixing Layer

In experimental wind tunnels and in many technological applications, the plane mixing layers of

interest are spatially developing. Typically, two free streams of unequal velocity merge downstream of

a splitter-plate that physically separates them. The vorticity at the interface between the two streams

then rolls up as a result of the well-known Kelvin-Helmholtz instability. If one were to observe the

resulting mixing layer in a reference frame moving at the average of the two free-stream velocities, the

evolution of a single Kelvin-Helmholtz roller could be observed. In this frame of reference the flow

appears to develop in time. For free-stream velocity ratios near 1, there is little difference in the eddies

upstream and downstream of any particular point. This suggests the alternative temporally evolving

form of a plane mixing layer, in which the flow is homogeneous in the streamwise direction and evolves

in time from a prescribed initial condition rather than in space from upstream inlet conditions. It can

be shown (Buell, Moser, and Rogers, to be published) that in the limit of equal free-stream velocities,

the spatially and temporally developing mixing layers are identical. Although only an approximation to

a spatially developing mixing layer, the temporally evolving layer is also of interest as a good model

of geophysical mixing layers, which form in the absence of a splitter-plate (Turner 1973), and of the

stratified tilting-tank experiments of Thorpe (1968, 1971, 1973, 1985).

The temporally evolving formulation has many advantages for direct numerical simulation, and

for this reason it has been used often in the study of mixing layers. The greatest advantage is that the

computational domain need only capture a few Kelvin-Helmholtz roll-ups rather than the entire flow

evolution from the splitter-plate to the outflow boundary. This permits the use of finer meshes and,

therefore, the simulation of higher Reynolds numbers (or more pairings at a given Reynolds number).

Even with the best computers a_ailable today, the study of mixing transition (see Part 2) is simply not

feasible in a spatially developing simulation. Another advantage of the temporal formulation for numer-

ical simulation is that periodic boundary conditions may be used in the streamwise direction, eliminating

the need for inflow and outflow boundary conditions. Current spatially developing flow simulations can-

not entirely eliminate forcing of the inlet by unphysical signals reflected from the downstream outflow

boundary (Buell and Huerre 1988).

The major goal of the work reported here is to study three-dimensionality in plane mixing layers, and

in particular to understand the mechanisms leading to the "mixing transition." Therefore, well-resolved,

high-Reynolds-number, three-dimensional simulations are required. This can only be accomplished for

the temporally evolving problem and, therefore, that is the formulation studied here. To ensure that the

flows simulated do indeed resemble their spatially evolving counterparts, many of the results of this

work, and of the work reported in Part 2, have been compared with the spatially developing simulations

of Buell and Mansour (1989a) (at a velocity ratio of 0.2). In all the comparisons it was found that

the dynamic mechanisms that occur in the time-developing layer also occur in the spatially developing

layer. 2 Two important ways in which the temporally and spatially developing mixing layers do differ
are outlined below.

2A thorough comparison will be available in a report by Buell, Moser, and Rogers (to be published).



In an incompressible spatially developing layer, any structure can affect the evolution of all other

eddies in the flow, both upstream and downstream. In the temporally developing flow, events in the

present cannot change those that have already occurred. Thus, when considering the evolution in time as

an approximation to the evolution in space of a spatially developing layer, the elliptic nature of the flow

development is not represented. This might seem to be a severe limitation of the temporal approximation,

but in practice the vortex dynamics of the developing mixing layer appear to be dominated by local

interactions and not to be strongly affected by the streamwise inhomogeneity.

Another difference between temporally evolving and spatially evolving mixing layers is the en-

trainment of free-stream fluid. Because of the streamwise homogeneity in the temporally evolving case,

as much free-stream fluid enters the domain from upstream as leaves downstream. The mean-flow

continuity equation then requires that the mean vertical velocity be a constant; to fix the layer location,

this constant is taken to be zero. Thus, in the temporal problem there is no inflow at infinity. In the

spatially developing problem the amount of free-stream fluid leaving the domain need not equal the

amount entering it, and a mean inflow from infinity (on both sides of the layer) is possible. Moreover,

it is well known that a spatially developing mixing layer entrains more fluid from the high-speed side.

These entrainment characteristics are not reproduced in a temporally developing mixing layer.

Finally, there is an important subtlety in comparing statistical properties of spatially developing and

simulated time-developing mixing layers. In an experimental spatially developing mixing layer, average

properties are obtained by time-averaging the signal from a fixed probe. If the inlet conditions are

stochastic, a variety of different structures will pass the fixed probe and contribute to the average. The

analogous situation in the time-developing mixing layer is to use stochastic initial conditions in a very

large spatial domain and average in the streamwise direction. However, using a large spatial domain

obviates one of the main advantages of a time-developing simulation. Instead, a small spatial domain is

used, and the averages only include the contribution of a few structures. This is analogous to providing

a time-periodic (nonstochastic or forced) inlet condition in a spatially developing mixing layer. The

resulting statistics can be qualitatively different. For example, in a natural spatially developing mixing

layer (stochastic inlet), the layer thickness grows linearly in the streamwise direction, whereas in our

simulations and in forced spatially developing layers (e.g., Ho and Huang 1982) the thickness may even

grow nonmonotonically (see secs. 3.2 and 4.2.1). Since our major concern in the current work is the

characterization and evolution of the commonly observed structures in the mixing layer, the inclusion

of just a few structures in average quantities is not a concern.

2.2 Governing Equations and Numerical Considerations

The simulations reported here were obtained by solving the vorticity equation derived from the

incompressible Navier-Stokes equations:

-I- V X (60 X U) = V2_ (1)

where U(:r, y, z, t) is the velocity vector (with components u, v, and w), and w --- V x U is the vorticity

vector. Here, U (the half-velocity difference) and 6° (the initial vorticity thickness of the layer, see

eq. (4)) have been used to nondimensionalize the equations and form the Reynolds number Re = U6°/v

(v is the kinematic viscosity). Throughout the paper this nondimensionalization is used. In addition,



theevolutionof a passivescalarT is computed using the scalar equation

OT

O---t+ U. VT = _ V2T (2)Pe

where the Peclet number is given by Pe = ReSc and the Schmidt number by Sc = u/7 (where 7 is
the molecular diffusivity of the scalar).

The above equations are solved using periodic boundary conditions with periods Lz and Lz in the

streamwise (x) and spanwise (z) spatial directions. 3 In the cross-stream (V) direction, w and T-

(where T is the average mean scalar profile in V) go to zero as y ---, +c_. The x- and z-dependence

of the independent variables is represented by finite Fourier series, and the y-dependence is represented

as a polynomial expansion in the mapped variable r/= tanh(y/yo), where Y0 is a mapping parameter

(usually set to be of the order of the final layer thickness). In addition, the v-dependence of the velocity

U is represented using special expansion functions that exactly represent the slow decay of velocity

perturbations at +cx_. The computational method was developed specifically for the simulation of three-

dimensional free shear layers. It is a spectral Galerkin method and exhibits "infinite-order" accuracy

of the spatial discretization. A detailed description of the method can be found in Spalart, Moser, and

Rogers (1991). The equations were advanced in time using a compact third-order Runge-Kutta scheme

of the form proposed by Wray (personal communication; see Spalart, Moser, and Rogers (1991) for

details). The Galerkin quadratures involving the nonlinear terms are computed using a Gauss quadrature

with sufficient points to eliminate aliasing.

2.3 Specification of Initial Conditions

The self-similar solution for the streamwise velocity profile of the laminar, temporal, plane mixing

layer is a viscously spreading error function. Thus, an error function,

= Uerf(v_ v/d_ 0 ) (3)

is used for the initial mean streamwise velocity profile in most of the simulations discussed here. Note

that this profile has a vorticity thickness

2U

_w -= t,ut-'/u)l'_rr/_V'tmax (4)

of 5°. Other initial mean streamwise velocity profiles were also used for a few simulations. Hyperbolic

tangent profiles result in flows that are similar to those resulting from the error function profile (eq. (3)).

Initial mean profiles containing a splitter-plate wake component (discussed in sec. 4.3.7) were also used.

Such profiles break the symmetry of the error function profile and can lead to more complex flows. In

all cases the initial mean passive scalar profile is given by

--T=_l[1 + erf(v/-_y)] (5)

3Note that spanwise periodicity precludes the possibility of studying end-wall effects, that is, side-wall boundary layers,
etc.
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wherethe magnitudeof the scalaris arbitrary sincethe passivescalargoverningequationis linear in
the scalarquantity T (see eq. (2)).

In addition to the mean velocity, simple perturbations are included in the initial conditions. These

perturbations include just one or a few of the x- and z-Fourier modes of the solution. Streamwise and

spanwise fundamental wavelengths (Ax and Az) are chosen (usually the most unstable wavelengths from

linear theory; see secs. 3.1, 4.1) and perturbations with these wavelengths are used. To accommodate

these perturbations, the computational domain must be an integer multiple of these wavelengths in the

z- and z-directions. Thus, in general, Lz = NA:c and Lz = MAz, and N and M are 1 for all cases

reported here (they are as large as 8 for cases in Part 2).

To specify the initial conditions and to facilitate discussion throughout this paper it is necessary to

refer to specific wavenumbers; they will be referred to in ordered pairs

(a,/3) = (kzAx/(27r), kzAz/(2rc)) (6)

Thus, the perturbations discussed above have energy in modes with a or fl or both equal to 1. In

general, the simulations include wavenumbers with a = -4-j/N for j = 0, 1,2,..., (Nz - 2)/2 and

19 = -t-I/M for l = 0, 1,2,..., (Nz - 2)/2, where N:r and Nz are the (even) number of Fourier modes

in the z- and z-directions, respectively. Note that because the quantities under consideration are real,

the (04/9) mode of their Fourier transform is the complex conjugate (denoted by *) of the (-a,-/3)

mode. Thus, in most cases we may consider only modes with a > 0.

In addition to its wavenumber, an initial perturbation requires specification of its functional form,

an amplitude, and a phase to be completely determined. In the simulations reported here perturbations

with four different functional forms were used. The simplest form used here is a Gaussian in y (e -try2)

for either a vorticity component or the vertical velocity; these are referred to as a;-Gaussian (wG) and

v-Gaussian (vG), respectively. The most unstable eigenfunctions of the linear disturbance equation

for the Fourier mode under consideration were also used. Both viscous eigenfunctions (VE, from the

Orr-Sommerfeld equation) and inviscid eigenfunctions (IE, from the Rayleigh equations) were used.

The amplitude of a given Fourier mode (of an initial perturbation or in the evolved field) can be

measured by the integrated (in y) rms velocity of the mode. Thus, we define
i

_f?_c_ 2zti(a':t:/3)fi*(a':k/3)dY a > 0 and/3 > 0 (7)
A +

where fii(a,/3) is the (a,/3) Fourier mode of the velocity component u i. Note that A + has only been

defined for non-negative a and/9. Negative a is not necessary, because of the conjugate symmetry

of the Fourier transform, and negative/3 is represented by ASH. Note also that the factor of 2 in the

integrand is to account for the energy in the conjugate symmetric mode (-a, q:/3), and that A+a3 = ASfl

when a or/3 is zero. It will also be convenient to define a combined amplitude Aa_, which includes

both the positive and negative/3 modes, thus:

if a = 0 or/3 = 0

otherwise
(8)
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Throughout this report, Aa_ is quoted normalized by UV/_. Also, the superscript sat is used to

indicate the saturation amplitude of a given Fourier mode (the level of the first maximum of Aa_ in

time).

Finally, the absolute phase of a given perturbation Fourier mode is not generally relevant, because

of homogeneity in x and z. Phases have usually been chosen to conveniently position the resulting

flow structures in the computational domain (e.g., place the Kelvin-Helrnholtz roller in the center of

the domain). However, the relative phase between different Fourier modes in the perturbation can be

important. When this is the case the relative phases for the case under consideration will be described

(sec. 4.4).

3 TWO-DIMENSIONAL ROLL-UP

To determine how a three-dimensional mixing layer departs from its two-dimensional counterpart, it

is necessary to consider two-dimensional flows as a basis for comparison. In addition to determining the

amount of "three-dimensionality" present in the three-dimensional flows, such simulations enable one

also to study important phenomena that are essentially two-dimensional. The Kelvin-Helrnholtz roll-up

of spanwise vorticity into rollers, the pairing of these rollers, and the rate of spanwise vorticity depletion

in the braid region between these rollers (as well as its reentry into the braid region at late times) are

examples of two-dimensional phenomena that are relevant to three-dimensional flows. Two-dimensional

simulations also provide a quick way to determine the effect of varying the two-dimensional parameters

(at least while the three-dimensional disturbances are relatively weak). Changes brought about by varying

such parameters (i.e., wavelength, form, and amplitude of a two-dimensional disturbance) and by varying

the Reynolds number are described below. A list of the two-dimensional simulations for which data

are presented is given in table 1. Many other two-dimensional simulations were also performed to

corroborate conclusions drawn in the text. In all these simulations the only initial disturbance was in

the (1,0) mode.

Table 1. Parameters of the two-dimensional simulations a

Simulation Reo rr 7"o Disturbance AIO

2D100 100 10.5 14.4 VE 0.10

2D250 250 10.3 14.5 VE 0.10

2D500 500 10.1 14.6 VE 0.10

2D500vG 500 11.3 17.8 vG 0.10

2D500_G 500 11.2 18.2 wG 0.10

2D1000 1000 10.0 14.8 VE 0.10

2D2000 2000 10.0 14.9 VE 0.10

apt = 1.0 and _x = 1.16(2zr) for all cases.
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3.1 Variation and Selection of Initial Conditions

For the vast majority of the simulations described in this paper and in Part 2, the initial instability

wavelength Az was taken to be the most unstable wavelength in the absence of viscosity of the initial error

function profile given by equation (3). Linear stability calculations for this case show the most unstable

wavenumber to be kz = 27r/Az = 0.86 (Monkewitz and Huerre 1982, verified by the computational

method used here). Neither the linear growth rate nor the structure of the resulting flow is sensitive to

variations in the wavenumber near the most unstable wavenumber. Likewise, changes in the growth rate

resulting from the presence of viscosity are small at moderate Reo: a 5% reduction from the inviscid

value for Re0 = 250. Large departures from the most unstable wavelength can result in different

distributions of spanwise vorticity, different saturation energy levels of the fundamental disturbance,

and different amounts of time required to reach this saturation.

For the initial disturbance levels considered here, all functional forms (see sec. 2.3) of the funda-

mental two-dimensional perturbation ((1,0) mode) lead to qualitatively the same behavior. 4 This is not

surprising, because initial disturbances that are small enough for linear theory to apply will all evolve to

the viscous eigensolution regardless of the initial form. However, some quantitative differences between

the different functional forms can be detected. In particular, disturbances of different forms with the

same amplitude (A10) will have different initial enstrophy (_viwi) levels. Also, the flow resulting from

an initial Gaussian disturbance will develop less rapidly than a flow resulting from a VE disturbance

with the same amplitude (see fig. 1(a)). The reason for this is simply that the Gaussian disturbances

have a smaller projection on the unstable eigenfunction. The effect is similar to reducing the initial

amplitude of the VE disturbance and can be approximated by a shift in the time axis as expected from

linear theory. Another effect of varying the disturbance functional form is that the initial peak magnitude

of the vorticity varies. In a two-dimensional flow, there is no vortex stretching and the vorticity extrema

are bounded by their initial values; in the absence of viscosity, the extrema are constant. Because of

the relatively high Reynolds number (Reo = 500) of the cases under consideration, there is little decay

of the peak vorticity level for the duration of the simulations. The disparity in vorticity extrema among

the cases with different disturbance forms is thus "locked in" (see fig. l(b)).
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Figure 1. Time development of (a) AlO and (b) spanwise vorticity extrema at Re0 = 500 for various

initial two-dimensional disturbance profiles.

4For the Reynolds numbers used here the IE initialization leads to results that are nearly identical to those obtained from
VIE initialization, with only slight differences during a short adjustment period. The vG and oJG initializations result in
slightly more significant quantitative differences.
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Finally, the amplitudeof the initial disturbancemust be specified. If the disturbancespresent

in experiments were truly infinitesimal, they would grow according to linear theory until nonlinearity

became significant. By using viscous eigensolutions with an initial amplitude just slightly less than that at

the onset of nonlinearity, we can avoid simulating the linear regime. In practice, some linear development

is simulated to allow any necessary adjustments (i.e., the adjustment of nonviscous eigenfunction vertical

profiles and, in three-dimensional simulations, the development of vorticity components that were not

initialized). Also, because the mixing layer is thickening by viscous diffusion, it is important that the

initial disturbance amplitude not be too small. An excessively weak initial disturbance will permit the

layer to grow by diffusion to the point at which Ax is no longer a good approximation to the most

unstable wavelength. It was found that an initial amplitude AI0 of 0.1 met the requirements outlined

above, and this amplitude was used for most of the simulations reported here. Cases with disturbance

levels as low as 0.01 have also been simulated, with the box size Lx increased to accommodate the

longer instability wavelengths associated with the viscously thickened layer. Comparisons of various

quantities of interest between runs of different initial disturbance amplitudes show that the dominant

effect of this variation is simply a shift in time without a significant change in the character of the

time development. In conclusion, it should be noted that the effort to match the growth of infinitesimal

disturbances is somewhat arbitrary since experimental disturbances are not infinitesimal.

3.2 Time Development and Reynolds Number Variation

Based on the discussion in section 3.1, an initial perturbation consisting of a viscous eigenfunction

in the (1,0) mode with amplitude A10 = 0.1 was selected as the baseline two-dimensional disturbance. In

this section, several simulations with a range of Reynolds numbers from 100 to 2000 will be examined,

to describe the two-dimensional evolution of the flow and to determine the effects of Reynolds number

variation.

As the flow evolves from the initial VE disturbance in the (I,0) mode, the amplitude A10 of that

Fourier mode grows exponentially for a time at a rate consistent with linear theory (fig. 2). The Fourier

amplitude ultimately saturates, reaching a maximum at the "roll-up time" rr (reported in table 1). This

definition is arbitrary, but other definitions (such as the time to reach the peak enstrophy level of the

(1,0) mode) yield similar values. It is apparent in figure 2 that the lower Reynolds number simulations

(100 and 250) have a lower saturation amplitude tasat_ and a larger "rr. However, for Reo > 500, the

amplitude evolutions are nearly identical.

As the disturbance is growing, the spanwise vorticity is collecting into a spanwise roller at the

expense of the vorticity in the braid regions located between a roller and its periodic images (fig. 3). By

7"r (fig. 3(b)), the roller is roughly circular, and the vorticity is largely depleted from the braid region.

Since there is no subharmonic mode (½,0), the rollers cannot pair, but become elliptical in shape

(fig. 3(c)). As they become more elliptical, they extend further into the braid region so that spanwise

vorticity reenters this region. Similar development is observed in experimental mixing layers when the

inlet conditions are forced periodically at a single (fundamental) frequency (see, for example, fig. 2 of

Ho and Huang 1982 and Nygaard and Glezer 1991). In this "oversaturated" state, some vorticity will

eventually cross the plane halfway between the roller and its periodic image (the edge of the domain in

this case), later to be absorbed by the periodic image roller.
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Figure 2. Time development of A10 at various Reynolds numbers (viscous eigenfunction disturbance

profiles were used).

The depletion of vorticity from, and the ultimate reentry of vorticity into, the braid region can be

tracked in time by monitoring wb, the strongest vorticity in the mid-plane between the rollers (fig. 4(a)).

The magnitude of w b declines steadily as vorticity is depleted from the braid region, but suddenly

increases at time ro (oversaturation time, also reported in table 1), corresponding to the reentry of

vorticity into the braid region as discussed above. This oversaturation has important consequences in

three-dimensional mixing-layer evolution. Shortly after To, the magnitude of wb again decreases. For

large enough Reo, the oversaturated eddy may again eject vorticity into the braid region. This second

reentry of spanwise vorticity into the mid-braid region occurs in the Re 0 = 2000 case at t = 700 = 25.6

(fig. 4(a)).

As can be seen in figure 4(a), increasing the Reynolds number delays the removal of vorticity from

the mid-braid region (presumably because viscous thickening reduces the vorticity levels in the braid

region, an effect present even in the absence of roll-up). Despite this, ro is nearly the same for all the

cases shown. The minimum magnitude of w b reached at ro does not exhibit a monotonic trend with Re o.

For Reo - 100, the relatively large viscosity limits the ability of the rollers to deplete vorticity from the

braid region, and for large Re 0 the delayed depletion results in a larger w b at To. The lowest magnitude

of wb is achieved for a Reynolds number between 250 and 500. The magnitude of the spanwise vorticity

brought back into the braid region for t > To is greater for larger Re o. At Reo = 100, _b exhibits

behavior qualitatively different from that at the higher Reynolds numbers. The decay of w b is rapid, a

result of viscous thickening, and there is no second period of braid vorticity depletion after To.

As the vorticity is extracted from the braid region, this region becomes dominated by plane strain.

The evolution of the braid strain-rate is also important in three-dimensional flows. The evolution of the

maximum principal strain-rate in the mid-plane between the rollers is shown in figure 4(b). At early

times the maximum strain-rate is nearly 1, because it is dominated by the mean velocity gradient. As

the mixing layer rolls up, the strain-rate decreases to a plateau level of about 0.5 by "ro. This is more

than the large-scale strain-rate estimate AU/Ax, which is 0.27 in these flows. This plateau value of

14
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Figure 3. Contour plots of spanwise vorticity.

intervals.

Contour increment is -0.2, and tic marks are at b°

the maximum strain-rate is nearly constant over our Reynolds number range. However, the initial rate

at which the strain-rate is reduced does depend on Reo, with lower Reynolds numbers producing more

rapid reductions. In fact, for Reo > 500, the maximum mid-braid strain-rate increases initially.

Two other quantities of interest are also shown in figure 4. The time development of the momentum

thickness,

f?em= (1- u2)ey (9)
oo

is shown in figure 4(c). For Reo _> 500, the curves are nearly identical, and the Re 0 = 250 curve is

similar. The Reo - 100 case, on the other hand, shows significant viscous effects, including substantial

early-time viscous thickening, and damping of the late-time oscillations. Viscous effects are also evident

in the peak vorticity levels shown in figure 4(d) for Reo <_ 250. For Re o _> 500, the viscous decay of

the peak level is minimal.
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Figure 4. Time development of (a) mid-braid vorticity, (b) mid-braid strain-rate, (c) momentum thick-

ness, and (d) vorticity extrema at various Reynolds numbers (viscous eigenfunction disturbance profiles

were used).

To demonstrate the effects of Reynolds number variation on flow structure, the vorticity and passive

scalar contours just before To are shown in figure 5 for Reynolds numbers of 100, 500, and 2000. The

differences are striking. The Reo = 100 flow is smooth and well mixed (as can be seen from the passive

scalar contours). The Reo = 2000 case shows many "windings" of vorticity, separated by free-stream

fluid. The Reo = 500 case is similar to the Reo = 2000 flow in that the windings of vorticity and

scalar are evident, though they are not as pronounced.

All the results discussed above indicate that for initial Reynolds numbers less than 500, significant

viscous effects become evident in these two-dimensional simulations. In order to avoid these low-

Reynolds-number effects, 500 was selected as the Reynolds number for most of the simulations reported

here.
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Figure 5. Contour plots of spanwise vorticity and the passive scalar (T) just before _'o. Contour

increments are (a)-(c) 0.02, and (d)-(f) 0.08. In (d)-(f), contours start at 0.02 (bottom) and go to 0.98

(top). Shaded regions indicate free-stream fluid, and tic marks are at 60 intervals.
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4 THREE-DIMENSIONAL ROLL-UP

4.1 Initial Conditions

In addition to the two-dimensional initialization parameters described in section 3.1, a number of

three-dimensional parameters must be specified. These include spanwise disturbance wavelength, form,

and strength of the three-dimensional disturbance, and phasing of the three-dimensional disturbance

relative to the prescribed two-dimensional disturbance (see sec. 2.3). Also, although it is not feasible to

increase the Reynolds number beyond Reo = 500, changes brought about by decreasing the Reynolds

number will be examined.

First, a spanwise fundamental wavelength (Az) must be selected; it will determine the spanwise

computational domain size (Lz = Az for the simulations described here; see sec. 2.3). Pierrehumbert

and Widnall (1982) found that three-dimensional disturbances with Az/Ax _ 0.6 are the most unstable

for a row of Stuart (1967) vortices (core-size parameter p = 0.25, chosen to match the experimental

vorticity distributions of Browand and Weidman (1976)). However, the growth-rate curve has a broad

peak, signifying that the three-dimensional disturbance growth rate is not sensitive to the choice of Az.

Corcos and Lin (1984) studied the linear stability of an evolving two-dimensional base flow and also

found the growth rate to be insensitive to Az. We made a similar study (discussed in detail in sec. 5.3

and in Part 2) and, like Pierrehumbert and Widnall, find the most unstable spanwise wavelength to be

Az/Aa: ,._ 0.6. Because of this, most of the three-dimensional roll-up simulations were performed with

Az = 0.6Ax = 0.696(27r). In agreement with the weak dependence on Az/Aa: noted above, simulations

with 0.5 < Az/A:r < 1.0 yield results similar to those for the Az/Ax = 0.6 case (e.g., sec. 4.3.3).

Experiments (e.g., Huang and Ho 1990) also indicate that the most unstable spanwise wavelength is

about 0.6Aa:.

The functional form of the three-dimensional disturbance is described by the wavenumbers of the

Fourier mode initialized (a,/3) (see eq. (6) for definition), the vertical (y) profile of the disturbance, and

the components of vorticity being initialized. Initial disturbance energy can be included as a streamwise

invariant (STI) disturbance in the (0, 1) mode, as an oblique disturbance in the (1,4-1) modes, or as a

combination of the two. For the oblique disturbances, both the (1, 1) and (1, -1) modes are generally

initialized with the same vertical profile and the same amplitude, though simulations were also run with

only one of these modes initialized (sec. 4.4.4). Note that because Az/Ax = 0.6, the (1,4-1) modes are

at an angle of about 30 ° to the streamwise direction.

Several different initial vertical disturbance profiles were studied. Viscous eigenfunction (VE)

profiles were usually used for the oblique disturbances. However, for the STI modes there are no

eigenfunctions for our boundary conditions. For these cases (and some oblique disturbance cases),

Gaussian vertical velocity (vG) or Gaussian streamwise vorticity (ovG) profiles were used. For most

of the simulations the vertical vorticity component ovu was not initialized. This typically resulted in a

short (up to t _ 1) development time during which ovy grew rapidly to a level comparable to that of

ovx. If we were attempting to truly match the development of an infinitesimal disturbance, the initial ovv

would have to be nonzero to account for its development in the presence of an exponentially growing

ova:. Because of this, some simulations were run with w v initially nonzero (Gaussian vertical profile or

equilibrium profile associated with the initial ov:r VE disturbance); they are discussed in section 4.3.6.
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The initial energy in the three-dimensionaldisturbanceis typically of the same order as that

of the two-dimensional fundamental disturbance (0.025 < _/A21 + A21/Alo < 10). The associated

streamwise circulation, 1-'x (definition given in sec. 4.2.3), is thus much less than the spanwise cir-

culation given by the mean flow boundary conditions, 1-'z = AUAx. For the cases reported here,

0.005 < Fx/Fz < O. 100.

Finally, the phasing of the three-dimensional disturbance relative to the two-dimensional disturbance

must be specified. For the STI and single oblique disturbances, phase is not relevant since it only affects

the positioning of the disturbances in the periodic computational domain. A pair of oblique waves,

however, results in local vorticity concentrations that may appear where the two-dimensional roller will

develop, where the braid region will develop, or anywhere in between, depending on the phase.

The two extreme phasings considered in this paper are the "in-phase" case, in which the three-

dimensional streamwise vorticity concentrations are maximum at the mid-braid and the mid-roller

streamwise locations, and the "out-of-phase" case, in which the streamwise vorticity is zero at these

locations (see sec. 4.4). Pierrehumbert and Widnall (1982) termed the instability that arises from the

in-phase case the "translative instability." They find no appreciable instability for the out-of-phase case,

in which the three-dimensional disturbance causes a "bulging" of the vortex cores (rather than parallel

bending as in the translative case).

The simple low-wavenumber initial conditions used in the flows examined here typically have two

symmetries that are preserved by the Navier-Stokes equations and therefore are present throughout the

flow evolution. 5 These two symmetries consist of a z-plane reflection symmetry,

wi(x,y,z)=-wi(x,y,-z), i=x,y

_i(x,y,z) =_i(x,y,-z), i= z (10)

where z = 0 is located at the zeros of the initial streamwise vorticity disturbance (here at the center or

boundary of the computational domain), and a point-reflection symmetry,

wi(x,y,z) =wi(-x,-y,-z) , i= x,y,z (11)

where x = 0 is located at the center of, or between, the roller cores of the two-dimensional disturbance;

y = 0 is the domain centerline; and z = 0 is at the peaks of the initial streamwise vorticity disturbance

(or for the OBLOUT simulation described in section 4.4.2 at the zeros of the streamwise vorticity). The

first of these symmetries implies that streamwise rib vortices, if they occur, will be found in pairs of

positive and negative vorticity of equal strength. It can be broken by considering spanwise subharmonics

(i.e., two pairs of ribs with ribs of different strengths), unequal strength ribs in a single pair (implying a

mean spanwise flow), or other asymmetric flows such as single oblique wave disturbances. The second

symmetry affects the streamwise rib shape, as described in sections 4.2 and 4.4.2.

The presence of these symmetries in many of the flows considered here simplifies the analysis of

the simulation results. For example, the first symmetry, equation (10), allows an unambiguous definition

of the rib streamwise circulation, and the second symmetry, equation (11), aids in defining and locating

5Because of numerical roundoff error, the initial integrated asymmetric enstrophy is of the order of 10-28 of the integrated
enstrophy in the domain. This increases in time but remains below 10 -22 in the simulations described here.
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therib vortexlines(seesec.4.2.3). Of course,laboratorymixing layersdonotpossessthesesymmetries;
therefore,casesthat excludeone or both of thesymmetrieshavebeenrun to ensurethat the insights
gainedfrom theseidealizedsymmetriccasesarevalid in general(seesecs.4.3.7,4.4.3, andPart2).

4.2 Typical Roll-up Evolution

Parameters for the three-dimensional simulations discussed in sections 4.2 through 4.4 are given in

table 2. In this section, the evolution of the ROLLUP simulation is described in detail. The ROLLUP

simulation was begun from a VE, A10 = 0.10 two-dimensional fundamental disturbance and an STI wG

disturbance of amplitude such that initially Fz/F 0 = 40, using disturbance wavelengths Az = 1.16(27r)

and Az = 0.696(27r) with Reo = 500. 6 Although the flow development is sensitive to initial conditions,

a number of low-wavenumber disturbances lead to structures that resemble those described here for

ROLLUP. Effects of varying the various initial parameters will be discussed in following sections using

the results presented below as a baseline for comparison.

The initial condition (t = 0) used for the simulation is shown in figure 6. The spanwise vorticity

is present in a two-dimensional sheet with a slight concentration caused by the two-dimensional fun-

damental disturbance. The streamwise vorticity exists in two tube-shaped regions (one positive, one

negative) that have no streamwise variation, as described in section 4.1. Despite the fact that a sur-

face contour plot suggests that these tubes are streamwise vortices, vortex lines show that the shaded

Table 2. Parameters of the three-dimensional simulations a

Simulation rr "to Tc 3D dist (kx, kz) F°z/Fz

ROLLUP 9.8 13.5 8.8 wG (0,1 ) 0.025

LOROLL 10.1 14.1 >> 70 toG (0,1) 0.005

HIROLL 7.5 12.1 b 4.9 wG (0,1) 0.100

LOWRE 10.1 12.9 >> To wG (0,1 ) 0.025

WIDEROLL 9.9 13.8 >> To wG (0,1) 0.025

DELAY 12.1 16.1 9.8 wG (0,1 ) 0.025

LOWDEL 12.4 15.9 10.7 wG (0,1 ) 0.025

VGROLL 9.6 13.5 7.6 vG (0,1 ) 0.025

WYROLL 10.1 13.8 13.4 wG (0,1) 0.000 c

OBLIN 10.2 13.4 7.3 VE (1,1) 0.025 in phase

OBLOUT 9.9 13.7 N/A VE ( 1,1 ) 0.025 out phase

OBLMID 10.0 13.0 8.2 VE (1,1) 0.025 mid phase

apr = 1.0 and Ax = 1.16(27r) for all cases; Az = 0.6Ax for all cases except WIDEROLL (Az = Ax);

Re 0 = 500 for all cases except LOWRE (Re 0 = t00) and LOWDEL (Re 0 = 250); and the initial two-

dimensional fundamental disturbance for all cases was VE AI0 = 0.10 except for DELAY and LOWDEL, which

were begun from VE A10 = 0.04.

bActual reentry of spanwise vorticity at t _ 14.5 (see text).

Clnitial disturbance in wy (not Wx as other simulations), thus _r'O = 0; peak level of try same as that of _vx in
ROLLUP.

6FMP is used to denote the value of -Pc at the mid-braid streamwise location, and F O = FMP(t = 0). Note when using

an STI disturbance for the initial condition, Fx is not a function of x.
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Figure 6. Surfaces of constant vorticity magnitude and vortex lines at t = 0. Cross-hatched surfaces

represent negative vorticity levels, shaded surfaces represent positive vorticity levels, and tic marks are

at 60 intervals. Also shown are the special planes MP, CP, BP, and RP.

and cross-hatched regions in figure 6(b) are not vortices but simply regions where the vorticity has a

streamwise component; that is, the nearly spanwise vortex lines are kinked in this region. It should be

noted that the presence of this three-dimensional disturbance does not alter the two-dimensionality of

the spanwise vorticity because O_z/Ox = O.

To study the details of the evolving three-dimensional flow, it will be necessary to examine contour

plots in planes cut through it. The four planes used here are superimposed on the initial vorticity

contours in figure 6. They intersect at least part of virtually all the flow structures that develop and

are, therefore, sufficient to describe the flow development. As mentioned above, the two-dimensional

disturbance causes a slight concentration in the spanwise vorticity sheet. The roller core will eventually

form at this location. The z-y plane cutting through the location of the maximum -Wz perturbation

of the two-dimensional disturbance is called the "roller core plane" and is referred to here as CP. The

z-y planes halfway between the CP and its periodic images are termed the mid-braid planes (MP) and

are located in the middle of what will become the braid region as the flow evolves. In addition to

these two z-y planes, two x-y planes are shown in figure 6(b). The fib planes (RP) are located at the

z-locations of the extrema of the _z disturbance (the one associated with the positive w:r disturbance

is shown). The roughly streamwise "rib vortices" (sec. 4.2.2) will be located in this plane as the flow

evolves. The between-fibs planes (BP) are located halfway between neighboring RPs (which contain

opposite signs of a;x). For the flow in figure 6, symmetry considerations ensure that _z = Wy = 0 in the

BPs. Flow symmetry also implies that the flow features in the RP and BP not shown in figure 6(b) are

reflections of those in the planes shown.

4.2.1 Comparison with two-dimensional evolution- Here the time evolution of several quanti-

ties in the three-dimensional ROLLUP simulation is compared with the corresponding development in

a two-dimensional flow that has the same initial Reynolds number and the same initial two-dimensional

disturbance (2D500).
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Figure 7. Time development of low-wavenumber amplitudes for ROLLUP and the corresponding

two-dimensional flow (2D500).

The evolution of A10, A01, and All for the ROLLUP simulation is shown in figure 7 along with

that of A10 from 2D500. The energy development of the two-dimensional fundamental mode is not

significantly altered by the presence of the three-dimensional disturbance, particularly for t < "rr (the

roll-up time). Despite this, the location and magnitude "¢ asat"" "_10 are slightly different from their values in

the two-dimensional case. For the three-dimensional flow, rr = 9.8 (compared with "rr = 10.1 for the

two-dimensional flow), and asat is 5% lower. The growth of the STI disturbance is not exponential until"_10
t _ 0.5. At this point its growth rate is larger than that of the fundamental two-dimensional disturbance.

After this rapid growth, A01 also saturates, reaches a minimum near rr, and then continuously increases

in the oversaturated state. Amplitude All is also shown. Although initially zero, it grows rapidly and

overtakes A01 by t _ 8. Shortly after To (oversaturation time), both the oblique and the STI modes

become more energetic than the two-dimensional fundamental. The highly three-dimensional structure

associated with this energy distribution is described in section 4.2.2.

Figure 8(a) contains the time development of _b, defined in the three-dimensional simulations as

the maximum (in y) of the spanwise-averaged tOz in the mid-braid plane. The presence of the three-

dimensional disturbance has increased the apparent rate of _z depletion from the mid-braid region up

to t ,,m4. This is primarily a result of the layer becoming corrugated (sec. 4.2.2), so that wb, which is a

z-average, includes some nearly irrotational regions; the peak _z level in the MP is actually higher than

that in the two-dimensional case. The oversaturation time, 7"0, occurs sooner in the three-dimensional

flow (13.5 vs 14.6), and although Wb is similar in magnitude to that in the two-dimensional case at 7"0

(-0.12 and -0.15), stronger spanwise vorticity is present in the mid-braid region for t > "1"o. This is

at least partly a result of stretching (and therefore amplification) of the vorticity that is being brought

back into the mid-braid region. The time at which the maximum mid-braid spanwise vorticity suddenly

increases (as opposed to the maximum spanwise-averaged value) is virtually identical to 7"0.

The mid-braid strain-rate evolutions are compared in figure 8(b). For the three-dimensional case

the maximum principal strain-rate of the spanwise-averaged flow at the mid-braid location is shown.

Three-dimensionality decreases the average braid strain-rate level slightly.
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Figure 8. Time development of (a) mid-braid spanwise vorticity, (b) mid-braid strain-rate, and (c) mo-

mentum thickness for ROLLUP and the corresponding two-dimensional flow (2D500).

The evolution of the momentum thickness is shown in figure 8(c). The layer is considerably thicker

at late times than it was in the two-dimensional cases. The corrugation of the three-dimensional layer

and the presence of streamwise "rib vortices" are responsible for this difference.

The development of the vorticity extrema is illustrated in figure 9. In the two-dimensional flow,

only Wz is present and, therefore, the discussion here will be limited to figure 9(a). Unlike in the two-

dimensional case, the peak negative Wz does not decay owing to viscous effects at early times (implying

that a small amount of vortex stretching is occurring to offset viscous diffusion). At t _ 9, the peak

negative Wz level begins a rapid increase, indicative of substantial vortex stretching. This behavior will

be explained later in terms of flow structures (see. 4.2.2). The strongest spanwise vorticity reaches

5 times its initial level beyond 70. In the two-dimensional flow, the maximum positive vorticity must

retain its initial value (zero) for all time. In the three-dimensional flow, positive Wz appears suddenly
at t _ 7.8 for reasons described in section 4.2.3.

4.2.2 Definition of the three-dimensional flow structures- A three-dimensional surface contour

plot of the strong vorticity at t = 12.8 (a time after 7"r but before 7.o) is shown in figure 10. Some

vortex lines are also shown in the figure and the domain has been periodically extended by a factor of

2 in both x and z for clarity. It is apparent that the flow is highly three-dimensional at this point.

The hatched "cup-shaped" surfaces represent spanwise vorticity that is more than twice the peak

level associated with the initial mean-error function profile. As a result of vortex stretching, the peak
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Figure 9. Time development of vorticity component extrema for ROLLUP and the corresponding

two-dimensional case (2D500). Note that Wzmin and Wymi n are equal in magnitude but opposite in sign

to Wxmax and a;ymax.

spanwise vorticity level within these regions at this time is -7.3 (see fig. 9(a)). Surfaces of lower

spanwise-vorticity magnitude (i.e., Wz ,_ -1) reveal a highly corrugated spanwise "roller" connecting

the strong Wz regions shown. Vortex lines traced through the cup vorticity also indicate a corrugated

roller (shown in sec. 4.2.5), the "upper" cup being above and slightly downstream of the "lower" cup.

The shaded surfaces shown in figure 10 are regions where V/_ 2 + w 2 is greater than 4.0. Each

of these regions has wz and Wy of the same sign, but the sign alternates in the z-direction. Vortex

lines begun in the MP at or near the center of these "ribs" are superimposed on the contour plot. The

alignment of the vortex lines with the shaded regions shows that the streamwise structures are truly

"vortices" and not simply regions where some wz or _y is present. Since the vorticity alternates in sign

in z, these are counterrotating vortices. Such structures have been observed in experimental mixing

layers by Bernal (1981) and others. The levels of Wx and Wy are comparable, which can be deduced

from the figure because the vortex lines are inclined at about 40 ° to the streamwise direction. The slight

angle the ribs make with the RP also implies that they have a small wz component.

The vortex lines connecting the ribs are separate from those of the spanwise roller and simply

connect each rib to its neighbor of opposite sign. In the connection regions, the vortex lines become

diffuse (indicating weaker vorticity levels) and primarily spanwise in orientation, with the same sense

as the initial mean vorticity. Because of flow symmetry they are perpendicular to the BE Contour plots

of Wz in the BP (sec. 4.2.4) show a narrow arc-shaped region through which the vortex lines connecting

neighboring ribs pass. Because of its shape, this flow structure is referred to as the "wisp." As can be

seen in figure 10, the wisps are located on the opposite sides of the roller from the cups.

4.2.3 Details of the rib evolution- Having introduced the key features of the flow (rollers, cups,

wisps, and ribs), we can now examine in detail the evolution of the flow. The discussion here focuses

on the characteristics of the rib vortices. The roller development is discussed in section 4.2.4.

The point-reflection symmetry (eq. (11)), present in this flow has important consequences regarding

the topology of the rib vortices. For the disturbance considered here it implies that the rib centers are

fixed at the locations of the extrema of the initial STI disturbance. Thus, in the figures the ribs are

centered at the centerline of the MP at z = Lz/4 and z = 3Lz/4. An additional consequence of this
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Figure 10. Surfaces of constant vorticity magnitude and vortex lines at t = 12.8. Cross-hatched surfaces

represent Wz = -4.0 and shaded surfaces represent _/_2 + w2 = 4.0. The "rib" structures contain wx

and OJy of the same sign, and the sign alternates in z (negative for the closest rib). Periodicity has been

used to extend the domain in both the streamwise and spanwise directions, and the same vortex lines go

through both of the counterrotating rib vortex pairs (concealed by the rib surface contour). Tic marks

are at 6° intervals.

symmetry is that rib vortex lines cannot undergo a viscous reconnection process resulting in a vortex ring

or loop (vortex lines closing back on themselves) containing the symmetry point. Both the formation

of such vortex loops and the movement of the centers of the ribs are observed in the flows discussed

in section 4.3.7 where the point-reflection symmetry is broken by the addition of a wake component to

the initial mean profile.

Figure 11 shows the time evolution of U;x and Wy in the RP (both are identically zero in the BP).

The fact that Wx and w v are roughly of the same magnitude in the same regions implies that the vorticity

vector is usually inclined at about 45 ° to the streamwise direction when projected into x-V planes. An

exception to this is the core (roller) vorticity at early times. Indeed, the presence of negative wz in

figure 11(a) is surprising, given that the initial condition consisted of positive w:c with no :r-dependence.

Production of this negative wz is due to vortex stretching and amounts to a kinking of the spanwise

roller vorticity that is opposite to the kinking of the vortex lines in the braid region (the latter being the

same as that given by the initial condition). During the early layer development there is competition

between the WzOU/OZ and WyOU/Oy stretching terms in the a;z equation. Since Wz consists almost
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Figure 11. Contour plots of streamwise and normal vorticity in the RP (both are zero in the BP). Contour

increments are (a),(d) +0.05; (b),(e) 4-0.4; and (c),(f) -4-1.0. Solid contours indicate positive vorticity,

dotted contours indicate negative vorticity, and tic marks are at 6° intervals.
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entirely of -au/Oy and wy is primarily Ou/Oz, the above two terms are nearly equal in magnitude

and opposite in sign. As the roll-up progresses, coz is drawn into the roller, and Wy is strengthened in

the braid region. In the roller core, where coz is concentrated, the term cozOU/OZ dominates, leading to

the production of negative cox, as shown in figure 11. In the braid region, where Wy is growing, the

term coyOu/Oy is largest and leads to the generation of positive coz, strengthening the initial _z at that

location. 7 At this time there is no negative coy being created by vortex stretching.

The creation of coy is also accomplished by vortex stretching (COyis zero throughout the domain

in the initial condition used here). At early times, the a;y contours are similar to those of _-'x and aJz

because coy is being generated almost entirely by the WzOV/OZ term. Thus, the spanwise variation

of vertical velocity kinks the spanwise vortex sheet so that it acquires a vertical vorticity component

(see also sec. 4.2.5). Experimentalists (e.g., Huang and Ho 1990; Bell and Mehta 1989a) have taken

advantage of this behavior to locate streamwise vortices from spanwise traces of streamwise velocity,

which show similar spanwise oscillations. At later times (t _, 4.4), Wy grows more rapidly in the braid

region than in the roller core, with all vortex stretching terms combining to enhance coy (the initially

zero WyOV/Oy term becomes significant). In the roller core, the other vortex stretching terms counter

the growth caused by the cozOV/OZ term. Later still, as the core cox becomes negative, the associated

Ov/Oz changes sign, becoming positive in the core in the RP shown. The cozOV/OZ stretching term thus

changes sign and tends to make the core a;y negative (this is partially reduced by a positive WxOV/OX

in the core). In the braid region, wzOv/Ox and cozOV/OZ combine to increase the magnitude of _y (the

coyOV/Oy term has also switched sign and is opposite in sign, but only about half the magnitude of this

sum, at t = 6.4). By Tr, the cox and coy distributions are similar, both having core vorticity and rib

vorticity that are opposite in sign at a given spanwise (z) location.

The streamwise and normal vorticity components reach magnitudes that are comparable to, and

even larger than, those of coz (fig. 9(b)). The negative extrema are not shown; they have the same

magnitude as the positive extrema because of flow symmetry. The streamwise vorticity shows little

growth before t _ 4 and rapid growth thereafter. The normal vorticity component, on the other hand,

grows nearly linearly up to t _ 9, after which it too grows rapidly.

In figure 1 l(b), positive cox extends through the ribs and around the roller (at very low levels), and

ends in isolated contours labeled A. Vortex lines drawn through the ribs and the isolated contours A are

not part of the same vortex structure. Vortex lines drawn from the mid-braid location in the ribs leave

this plane at the top and bottom of the roller, as seen in figure 10. The (weak) positive wz, labeled

A, is associated with predominantly spanwise core vorticity that has been "bent" by vortex stretching,

acquiring wx and wy components of the same sign as the ribs. The vortex lines associated with this core

vorticity are also kinked in the same direction as the rib vortex lines. At later times this core vorticity

is further strengthened by the strain field at these locations, and the vortex lines become increasingly

pulled out into hairpinlike structures. These "sub-rib" structures eventually resemble short streamwise

ribs. However, they remain weaker than the ribs and do not extend into the mid-braid region until well

past To.

Ou Ou y _ 1- z _ it is instructive to write the vortex stretching term as7Because the D"y__ term cancels from the sum w Ou _ w Ou

w Ou Ov Ou Ow OuxD-_ + D-_'5-_-- "0"_D'_" In this representation, all three terms are similar in magnitude. In the core, the second term
dominates and is aided by the third term, whereas in the braid region, all three terms are nearly equal in magnitude but the
last two combine to control the stretching behavior.
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Figure 12. Contour plots of spanwise vorticity (Wz) in the MP. Contour increments are (a) -0.2; and

(b),(c) 4-0.3. In (b), the T = 0.5 contour (heavy solid line) has been superimposed on the spanwise

vorticity contours. Shaded regions indicate regions of positive Wz, solid contours indicate positive

vorticity, dotted contours indicate negative vorticity, and tic marks are at 5° intervals.

The evolution of the Wz and wz vorticity components in the MP is shown in figures 12 and 13,

respectively. The early-time evolution of Wz (fig. 12(a)) shows the corrugation of the vortex sheet by the

three-dimensional disturbance. By 7-r (fig. 12(b)), the spanwise vorticity levels in the braid region have

been reduced, and some positive Wz is present where the ribs are located. As mentioned previously, wb

(fig. 8(a)) is a spanwise-averaged quantity, and because this average is taken over a region including

large segments of irrotational fluid, -w b is less than half the peak level of -Wz in figure 12(b). The

0.5 contour of the passive scalar quantity is also shown in figure 12(b). At this time, for the Peclet

number under consideration (Peo = ReoPr = 500), this scalar contour is a good approximation to the

material interface initially located at y = 0. The developing rib vortices have created a spiral pattern

in this interface, and the rib vortex lines assume a similar spiraling component. Where the vortex lines

run counter to the mean vorticity a region of weak positive Wz is apparent. By about 7-0 (fig. 12(c)),

diffusion has smoothed out the spiraling of the rib vortex lines, and a single region of positive ,_z is

found at the rib location. This vorticity is stronger than that present at "rr (fig. 12(b)) and is associated

with bending of the entire rib bundle of vortex lines back against the mean vorticity (discussed further

in sec. 4.2.5). The sudden appearance of positive Wz and its subsequent increase in magnitude was

shown in figure 9(a). This positive Wz is due mainly to the bending (into a horseshoe shape) of the

rib vortices as just discussed (although the largest positive Wz may not be in the MP). 8 Also visible

in figure 12(c) is the reentry of spanwise vorticity into the braid region (well above and below the

centerline) after oversaturafion. At this point, virtually all the negative Wz present in the MP is a result

of this reentry, and the use of ")b to determine 7"0 is thus justified. This negative spanwise vorticity is

associated with the wisp connecting neighboring rib vortices and is discussed further in section 4.2.4.

8Viscosity can also change the vortex line topology such that positive Wz is created. In this flow, however, this does not

occur until late in the flow development, and the resulting positive Wz is weak.
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Figure 13. Contour plots of streamwise vorticity in the MP. Contour increments are (a) 4-0.05; (b) 4-0.4;

and (c),(d) 4-1.0. In (c), there are four additional contours at 4-0.1 and 4-0.2, to show the low-level

vorticity reentering the braid region. Solid contours indicate positive vorticity, dotted contours indicate

negative vorticity, and tic marks are at 6° intervals.

The evolution of the streamwise vorticity in the MP is shown in figure 13. The behavior of w v is

similar, the contour patterns being nearly identical, though the magnitudes may vary depending on the

exact angle of the vorticity vector. By To, the streamwise vorticity has collapsed into compact vortices,

with a substantial increase in vorticity amplitudes (about a factor of 20 for wz). As can be seen in

figure 13, this collapse begins by a tilting of the initially elliptical a;z contours. This is followed by

the formation of an S-shaped pattern with a nearly axisymmetric core and eventually ends in complete

collapse into a nearly axisymmetric vortex (the cut shown is not perpendicular to the rib and the cross

sections therefore appear elliptical).

Lin and Corcos (1984) predicted this behavior by considering a two-dimensional model problem.

Intending to mimic the braid region of the mixing layer, they considered an array of counterrotating

vortices aligned with the extensional direction of a uniform plane strain with no strain in the spanwise

direction. Their predicted behavior is virtually identical to that shown in figure 13 (see fig. 4 in Lin and
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Corcos--sincewz and Wy are similar, either one can be compared with their "ribwise" vorticity), indi-

cating that this two-dimensional model problem captures the essence of the three-dimensional behavior

in the braid region. Their model, which is based on the circulation strength of the fibs, the rib spanwise

spacing, the strength of the two-dimensional plane strain, and the Reynolds number, will be discussed

further in section 4.3.1, in which other roll-up simulations with different initial three-dimensional dis-

turbance amplitudes are also considered. 9

The spiral pattern apparent in figure 12(b) occurs only when the rib vortices collapse as described

above. Consequently the appearance of positive Wz is closely related to the collapse, Using the passive

scalar as an approximation to the material interface separating the two streams, a "collapse time" re can

be defined. At t = 0, the scalar contours in the MP are parallel to the z-axis. As the ribs collapse, the

scalar MP contour begins to form a spiral as in figure 12(b). The time when the scalar contour at the

center of the rib in the MP has been rotated 180 ° is defined as Tc (reported in table 2). Note that a vortex

line segment at the same location would also be rotated about I80 ° at this time and therefore would

have a positive Wz component. For t > re, significant positive Wz is present in the flow (fig. 9(a)).

By t = 13.9 > "ro, spanwise vorticity has reentered the braid region and the resulting Wx is visible

(at a much lower level than that of the main fib) away from the centerline (fig. 13(c)). This wx is

stronger at t = 16.2 and, because it has the same sign, gets wound into the fib, forming a lobed pattern

(fig. 13(d)).

The sudden reentry of vorticity into the braid region is accompanied by a sudden increase in rib

(or more precisely MP) circulation, an important parameter in the Lin and Corcos model of the fibs.

Figure 14 portrays the evolution of the streamwise circulation,

fy,Of_z/2 _o_ Az/20v
Wx dzdy = - f _ dzdy

Fx = =-ocJz=O =-ooJz=O Oz

fy_ v(y,z )_z/2) v(y,z O) dy (12)
_ -- (X)

at various streamwise locations. The circulation over the other spanwise half of the computational

domain is equal and opposite by symmetry. This circulation is the same as that obtained by integrating

the vorticity component along the rib over the plane normal to the rib in the limit of infinitesimal

rib cross section. Thus, especially in the collapsed state, Fz should be a reasonable approximation to

Fri b. By manipulating the Navier-Stokes equations, the governing equation for Fx can be obtained (for

simplicity the inviscid case is considered here):

O0._Ftx fy=_oo(Utoz)OO Az/2 foo Ov IAz/2dy z=O Jy=-oo-- - = (U_xx) dy z=0 (13)

Since VZaz has no spanwise variation in the initial condition, the initial growth rate of/'z is zero in

the absence of viscosity. Also, when Wz is completely removed from a given streamwise location, Fz

cannot increase at that location. The removal of spanwise vorticity from the mid-braid region seen

in figure 8(a) results in a plateau in figure 14 extending from t = rr to t = ro (for the mid-braid

9The mason for examining the mid-braid strain-rate behavior shown in figure 8(b) is now clear; it has a large effect on

the collapse behavior of the rib vortices.
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Figure 14. Time development of streamwise circulation• Dashed lines are for variousbraid region

locations progressively farther from the MP as the curves move away from the solid line.

curve). The sudden increase in I'z occurs sooner for braid planes farther from the MP because the wisp

spanwise vorticity reenters them sooner.

In equations (12) and (13) the spanwise locations z = 0 and z = Az/2 are theBPs on either side

of a rib. The symmetry given by equation (10) implies that Wx and w u are zero in these planes, which

makes them a natural choice as boundaries for calculating the rib circulation. The symmetry given by

equation (11) implies that the Wz pattern in the z = Az/2 BP is the same as that in the z = 0 BP when

reflected in x and y. This fact can be used to simplify equations (12) and (13) for flows that possess

the symmetry in equation (11) (as ROLLUP does)• In particular, equation (12) becomes

fyO_
_r'x=2 v(y,z=O) dy (14)

_ -- (X)

and equation (13) becomes

01"x 2 (ZUZz)(y,z = O) dy (15)
Ot =-oc

From equation (15) it is clear that a change in the circulation Fz can only occur (inviscidly) when

there is OJz in the BP where u -¢ 0 (away from the centerline). The spanwise vorticity in the BP is

discussed in section 4.2.4. For study of circulation in the MP, the UWz distribution on the left boundary

(z = 0 BP) of figure 12 is used in equation (15). At t = 0 (not shown), the spanwise vorticity is

symmetrically distributed about the centerline, whereas u is distributed antisymmetrically. Integrating

their product in y thus yields zero and, as noted above, oFMP/ot is initially zero• As the layer develops,

the motion induced by the ribs moves the spanwise vorticity above the centerline, and the y-integral

of -ZUZz becomes positive• As can be seen from equation (15), this implies that the circulation of the

(positive circulation) rib increases. (The actual/-'x MP growth is small because the y-location of u = 0

also moves up). When the wisp (consisting of the vortex lines connecting neighboring ribs) reenters the

braid region, Wz is present well above the u = 0 y-location. This results in the rapid growth of F MP

fort>To.

31



A betterunderstandingof theabovecirculationgrowthmechanismcanbeobtainedby considering
the behaviorof vortex lines in the flow. By regardingthe rib asa collectionof vortex lines, it is clear
that its circulation canonly increaseif othervortex lines arebrought into the rib bundle. Becauseof
the symmetrygiven by equation(10), eachrib vortex line is connectedto the neighboringrib; that
is, the rib bundle consistsof manyhairpinlike vortex filaments. To increasethe MP fib circulation,
additionalhairpinlike filamentsmustbe broughtthroughtheMP to combinewith theexisting fib. The
wisp spanwisevorticity associatedwith the tip of thehairpin filament(locatedin the BP betweenthe
two ribs) must crossthe MP before this can happen. Note that it is exactly this spanwisevorticity
that appearsin equation(15) for O_rz/Ot. Without new BP spanwise vorticity (hairpin filament heads)

crossing the MP, the circulation _rMP cannot increase. Also, if a hairpin vortex filament with legs with

signs opposite those of the ribs crosses the MP, the circulation will decrease. Just before "ro, virtually

all the vorticity present in the braid region is already in a collapsed fib vortex, and no new filaments

are available to increase the circulation. However, as the wisp crosses the MP a large supply of vortex

lines becomes available again. Note that the arrival of the wisp in a given braid region signifies that rib

vortex lines from the neighboring braid region (upstream or downstream periodic images in this case)

are present in addition to the original rib lines.

According to the above description, the MP circulation should approximately triple after 7"0. This

is simply because any given MP will then have rib vortex lines from an upstream and a downstream rib,

as well as the rib centered in that plane. The time required to achieve the full factor-of-3 growth will

be the time required to pull all the hairpin vortex filaments through the MP. By t _ 16 (only At = 2.5

after to), the portion of the wisp containing the rib vortex lines has been pulled through the MP. At this

time, all the curves for Fx (fig. 14) at the five streamwise locations that are considered approach a value

of 3.8. This recombination of the Fz curves implies that there is no streamwise variation in circulation

at' this time and that no new nearby vortex filaments are still being pulled toward the MP. Indeed, the

value 3.8 is close to 3 times the plateau value of Fx (FzMP(t = to) = 1.3).

For t > 16, the five curves in figure 14 again separate as the vortex lines associated with the sub-fib

(which are connected in a second wisp structure discussed in section 4.2.4) enter the MP, bringing even

more hairpin vortex filaments to augment the circulation. It is difficult to define a circulation associated

with the sub-fib structures, because no symmetries can be taken advantage of to clearly define the area

over which the circulation should be computed. From the continued growth of/-'z MP when t > 16, it

would appear that the sub-fib circulation is comparable to the fib circulation by the time it is pulled

through the MP. By t = 20, the circulation /"zMP reaches 7.4 and is a significant fraction of the roller

core circulation Fz = AUAx = 14.6. Thus, a significant fraction of core vorticity has been pulled

through the braid region. 10

4.2.4 Details of the roller evolution- Figure 15 shows the time development of the spanwise

vorticity in both the BP and the RP. The early-time vorticity distribution shown in figure 15(d)(RP) is

similar to that of the two-dimensional roll-up at the same time. The roller is symmetric (required at

this spanwise location by the symmetry ofthe initial condition), and vorticity is being drawn from the

braid region into the spanwise roller. However, there is already evidence of three-dimensionality in the

BP (fig. 15(a)). The contours are asymmetric, and the level of Wz is not decreasing in the braid region.

10Note that of this 7.4, 3.5 is associated with core vorticity since 3(1.3) is associated with rib structures. Thus the fraction

of core vorticity pulled through the MP is 3.5/(14.6 - 1.3) = 0.26.
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Figure 15. Contour plots of spanwise vorticity in the BP and RP. Contour increments are (a),(d) -0.2;

(b),(e) 4-0.3; and (c),(f) 4-0.5. The heavy line in (f) is a vortex line through the mid-braid symmetry

point; the dashed portion is behind the plane shown. Shaded regions indicate regions of positive _z

(opposite in sign to the mean vorticity), solid contours indicate positive vorticity, dotted contours indicate

negative vorticity, and tic marks are at _0 intervals.
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Spanwisevorticity is beingadvectedinto theroller, but at thesametime vortexstretchingis amplifying
the braid vorticity. This stretchingis dueto the strainfield establishedby theforming fibs. In theBP
this stretchingis entirelyowing to WzOW/OZ; in the RP it is weaker and predominantly WuOW/Oy.

At t = 9.8 = rr (figs. 15(b), 15(e)), the roller of spanwise vorticity is roughly circular. Vortex

stretching has had a marked effect on the Wz distribution in the BP (fig. 15(b)). The peak spanwise

vorticity level, Wz = -3.73, is approaching twice the initial maximum. In addition, vortex stretching

is depleting spanwise vorticity from the upper half (lower half in the other BP) of the roller and is

concentrating spanwise vorticity in the cup-shaped regions described previously. The strongest mid-

braid Wz in the BP has a value of -1.39. At the same time, the RP contains a double structure of

spanwise vorticity. The two maxima in the roller core are associated with the two neighboring spanwise

cups (see fig. 10). The double-braid structure is likewise a cut through two adjacent braid _Oz structures

(see fig. 12(b)). In between these two braid structures is the region of positive (peak level 0.40) Wz

described in section 4.2.3.

At t = 13.9 (figs. 15(c), 15(f)), just after To = 13.5, the flow is similar to that shown in figure 10.

In the BP, the peak Wz reaches -9.30 in a well-defined cup. In addition, there are two wisps of spanwise

vorticity. The first, wisp 1, is stronger (peak level -1.20) and is reentering the mid-braid region. This

is the wisp that contains the spanwise vorticity connecting neighboring ribs. The second, wisp 2 (peak

level -0.98; however, this level increases to -2.08 by t = 16.2), forms a semicircular arc opposite the

cup at this time. Wisp 2 consists of spanwise vorticity connecting the sub-fibs visible in figure 11 and

described in section 4.2.3.11 The remainder of the BP is essentially irrotational (wx and w v are zero by

symmetry in this plane). In the RP at this time (fig. 15(f)) there is a complicated pattern of Wz. The

strong core Wz is from two adjacent cups, as in figure 15(e). The remaining contours are all associated

with the ribs. In this oversaturated state the vortex lines connecting the ribs are horseshoe-shaped. The

angles formed with the z-direction result in significant Wz, including a region of positive Wz close to

the cups. A typical vortex line going through these contours is shown in figure 15(f).

The time evolution of the spanwise vorticity in the CP is presented in figure 16. At t = 4.4

(fig. 16(a)), the spanwise roller undulates because of the spanwise variation of vertical velocity described

previously, and there is some spanwise variation in peak Wz level. By vr (fig. 16(b)), the cups have

begun to form (alternating between the top and bottom of the layer in the spanwise direction, as shown

in fig. 10). In addition, the spanwise vorticity associated with the braid region wraps over the top and

under the bottom of the roller. This results in a pattern similar to that in figure 12(b) above and below

the roller core in figure 16(b). 12 As can be seen in figure 10, the upper cup is downstream of the lower

cup. Because of this, the peak levels of cup spanwise vorticity do not occur in the CP. At this time, the

extremum in the CP is -2.76 and the peak is -3.73. The peak occurs downstream of this plane for the

liThe sub-rib vortex lines are not symmetric around their midpoints as are the rib vortex lines in this flow. Because of
this, a sub-rib vortex line does not go through the same place in the BPs on either side of it. At late times (t _ 16), sub-rib
vortex lines go through the center of wisp 2 in one BP and through the region joining wisps 1 and 2 in the other BP.

12Note: this implies that at low contour levels the roller will appear kinked in the opposite direction of the vortex lines
connecting the cups. Contours of the passive scalar quantity in the CP show a pattern similar to that of figure 16(b). Similar
patterns have been observed in the roller core in flow visualizations of experimental mixing layers (e.g., Lasheras, Cho, and
Maxworthy 1986, figure i2, frames 10-15; Lasheras and Choi 1988, figure 8, frames 5-14).
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Figure 16. Contour plots of spanwise vorticity in the CE Contour increments are (a) -0.2, (b) +0.3,

and (c) +0.6. Shaded regions indicate regions of positive Wz (opposite in sign to the mean vorticity),

solid contours indicate positive vorticity, dotted contours indicate negative vorticity, and tic marks are

at 60 intervals.

upper cup and upstream for the lower cup. 13 At later times (fig. 16(c)), the general pattern is similar.

The cups, however, have become more concentrated with larger magnitude vorticity. This concentrating

and strengthening by the strain field apparently continues until an equilibrium with viscous diffusion is

reached.

The vortex-stretching mechanism that generates the cup structures can be understood by examining

contours of wz in the CP (fig. 17). Throughout the evolution of the layer, the core distribution of wz

consists primarily of ribs from the upstream braid region above the roller, ribs from the downstream

braid region below the roller, and opposite-sign w:r in the roller core itself (the evolution of this core

vorticity was described in section 4.2.3 in the context of rib formation). This effectively forms two

"quadrupoles" (the core vorticity being associated with both) centered in each BP. At the center of one of

these quadrupoles, vortex stretching is enhancing the spanwise vorticity levels; at the other, compression

is weakening it. Note that at the neighboring BPs, the sign of the quadrupoles is reversed. This results

in cups alternating from the top to the bottom of the roller core as one moves in the spanwise direction.

The stagnation point associated with each quadrupole prevents the highly stretched vorticity from being

advected away, and thus allows the Wz levels to continuously increase in time (figs. 16, 9(a)).

The value of F:r for the CP is shown in figure 14. Initially constant, it changes sign as the bulk of

the core wz becomes negative. The fact that the total circulation (combining the core and rib tips above

and below it--see fig. 17(b)) becomes negative indicates that the core circulation is more than twice

that of the ribs at this streamwise location. Because of this, the "quadrupole" is not symmetric and the

net induced motion at the center of the quadrupole tends to give the cup its cuplike shape. The same

13The streamwise distance between the cup maxima at rr is 1.4 _ 0.2 ,_:r; the vertical separation is 1.3. Both increase

by a factor of 1.7 by t = 13.9.
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Figure 17. Contour plots of streamwise vorticity in the CP. Contour increments are (a) -I-0.02; (b) 4-0.4;

and (c),(d) 4-0.6. Solid contours indicate positive vorticity, dotted contours indicate negative vorticity,

and tic marks are at 60_ intervals.

vortex dynamics have been observed in Buell and Mansour's (1989a) direct numerical simulations of

spatially developing mixing layers. At later times the core vorticity is not as dominant, and for t > 7-0

the CP circulation is again positive.

4.2.5 Summary of ROLLUP evolution- The vortex lines associated with the spanwise miler

and the streamwise ribs are shown in figure 18 and are discussed here to summarize the evolution of this

typical three-dimensional, plane mixing-layer roll-up. At early times, wy develops rapidly. In the core

region, wz is being reduced, leaving a spanwise core that is bent predominantly in the vertical direction

(fig. 18(a)). The braid region _vx is enhanced by stretching, but the wy in this region is growing faster,

resulting in vortex lines that are also kinked predominantly in the vertical direction (fig. 18(d)). By 7-r,

the Kelvin-Helmholtz roll-up is substantially completed. Vortex stretching has produced significant wz

and ov_ in the roller core that is opposite in sign to the rib vorticity at the same spanwise location. This

implies that the spanwise roller is bent in a direction opposite to the vortex lines connecting the rib
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vortices(figs. 18(b),18(e)).14Thestreamwisevorticity is nowlargerthantheverticalvorticity (although
theyarecomparable),andtherib structuresareangledat about40° to the streamwisedirection. In the
braidregionthe vortex linesarecompact,indicativeof thecollapseof thefib vortices.Theconnection
to neighboringribs is more diffuse (fig. 18(e)),resulting in a wisp of low-level spanwisevorticity
in the BP.As time progresses,the rib vorticesextendfarther in the streamwisedirection. They also
becomelessconfinedto the RP andacquirea spanwisevorticity component.The hairpinlike vortex
linesconnectingadjacentribsbecomehorseshoeor f_-shapednearthetips (fig. 18(f)) (this evolutionis
typical of isolatedhairpin vorticesin a wide varietyof shearflows; e.g., seeMoin, Leonardand Kim

(1986)). The outward bulging vortex lines of this horseshoe structure have a significant Wz component,

as can be seen in figure 15(f). Some of the vortex lines are helical or spiraling in this region. The

mid-braid part of the rib is also angled in the spanwise direction at this point, resulting in positive Wz

(fig. 12(c)). As shown in figure 18(c), the spanwise roller continues to be stretched in the streamwise

and vertical directions, becoming more kinked in regions of strong vortex-stretching between the fibs.

In these regions, cups of strong spanwise vorticity are located. These cups, which cannot form in

two-dimensions because of the absence of vortex stretching, play an important role in the transition to

turbulence, as Will be seen in Part 2.

4.3 Variation of Initial Parameters

4.3.1 Initial rib circulation- The highly three-dimensional state shown in figure 10 results from

a streamwise vorticity disturbance with a circulation of only one fortieth of that associated with the

spanwise vorticity in a single roller. Given the difficulty in measuring such low vorticity levels in

experiments, it is not clear whether the disturbance strength of the case described in section 4.2 is

comparable to that observed in experiments, though crude experimental estimates by Jimenez (1983)

and Bell and Mehta (1990) of the rib circulation in the early development of mixing layers are in

good agreement with the plateau level of rib circulation shown in figure 14. In order to examine how

sensitive the flow evolution is to the initial three-dimensional disturbance strength, two additional cases

with F°/Fz = 0.005 (LOROLL) and 1-'°/1'z = 0.100 (HIROLL) were run with the remaining initial

condition parameters exactly as in the "typical" case (ROLLUP) described in section 4.2. This represents

a factor of 5 decrease and a factor of 4 increase over the .l-'°/Fz = 0.025 value for ROLLUP.

The developed flow field (t just past Tr) for the LOROLL simulation is shown in figure 19. It

resembles the ROLLUP flow described in section 4.2 in many ways, although the three-dimensionality

is reduced. The BP (fig. 19(a)) shows the concentration of spanwise vorticity into a weak cup, which

is not very cup-shaped at this time. This in turn results in a corrugated roller (fig. 19(d)). As with

ROLLUP, the RP (fig. 19(b)) shows both ribs and sub-fibs together with core streamwise vorticity

opposite in sign to the ribs. The MP streamwise vorticity distribution, however, is different from that

of figure 13(b), showing no evidence of the collapse described in section 4.2.3. Although the contours

in figure 19(b) indicate a long riblike region of Wx, vortex lines drawn through these points do not

stay confined to the RP. Instead, they form hairpinlike bends with a significant streamwise component

and a total streamwise extent that is about a third of what appears to be the rib in figure 19(b). This

behavior, in which the vorticity vectors are not aligned with the contour surfaces, is typical of weakly

three-dimensional flows with "noncollapsed" ribs.

14This behavior has been nicely documented in experimental mixing layers by Lasheras and Choi (1988).
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Figure 19. Contour plots for LOROLL at t = 10.5 ('rr = 10.1). Contour increments are (a) -0.2; and

(b),(c) -4-0.06. Solid contours indicate positive vorticity, dotted contours indicate negative vorticity, and

tic marks are at 6° intervals.

Contour plots from the HIROLL simulation are shown in figures 20 to 22. The typical flow

structures are again visible, although the flow is more three-dimensional than the ROLLUP flow. By "rr,

the BP (fig. 20(a)) shows a pronounced cup of spanwise vorticity, a largely irrotational core region, and

a wisp of spanwise vorticity opposite the cup. Note that in HIROLL the cup is oriented mostly vertically

(instead of horizontally as in ROLLUP), resulting in a corrugated roller (fig. 20(c)) bent primarily in the

streamwise instead of the cross-stream direction. 15 The RP (fig. 20(b)) shows the usual pattern of core

wx opposite in sign to the rib vorticity in the same plane. The sub-rib has wx of both signs, implying

more complicated vortex-line structure than that of ROLLUP. As can be seen in figures 20(b) and 21, the

ribs in HIROLL are nearly as large as the core at this point. They are also clearly collapsed, although

15Note that there are additional concentrations of spanwise vorticity between the cups.
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Figure 20. Contour plots for HIROLL at t = rr = 7.5. Contour increments are (a) -0.7, and (b) 4-0.6.

MP contours of w:r and Wz are shown in figure 21. Solid contours indicate positive vorticity, dotted

contours indicate negative vorticity, and tic marks are at 6° intervals.

the opposite-sign wz around the outer edge of the ribs again indicates that the vortex-line structure of

HIROLL is more complex than that of ROLLUP.

The evolution of rib vorticity in HIROLL is shown in figure 21. As in figure 12(b), the passive

scalar T = 0.5 contour level is superimposed upon the Wz contours. Before To, there is a good correlation

between the regions of positive tOz and regions where the initially horizontal scalar contour line has

been "turned over." As shown in figure 21(b), many windings of the scalar interface occur before the

molecular diffusivity of the passive scalar acts to mix the rib material (fig. 21(c)). Since Pr = 1.0, it

is expected that viscosity would also begin to have an effect on the rib vorticity at this time. The _z

pattern shown in figure 21(f) is indeed undergoing a change, acquiring a central core region of opposite

sign, but this must be due at least in part to vortex stretching. At later times this trend continues, and

by t = 15, the rib streamwise vorticity is concentrated in a narrow hoop-shaped region. The ribs also
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Figure 21. Contour plots of spanwise and streamwise vorticity in the MP. Contour increments are

(a) +0.4, (b) -I-0.2, (c) -]-0.3, (d) +0.4, (e) +0.7, and (f) -I-0.5. In (a)-(c), the T = 0.5 contour (heavy

solid line) has been superimposed on the spanwise vorticity contours. Shaded regions indicate regions

of positive Wz, solid contours indicate positive vorticity, dotted contours indicate negative vorticity, and

tic marks are at 6°_ intervals.

contain many regions of spanwise vorticity of both signs at this point. In summary, the H/ROLL ribs

are large enough to have their own complicated internal vortex dynamics, and this results in a flow that

is more complex than the ROLLUP flow.

The vorticity distribution in both the BP and the RP at t = 14.9 > "ro is shown in figure 22. In

the BP, the vorticity (only Wz because of flow symmetry) is confined to long filament-like regions 16

and roughly circular "roll-ups" of these filaments. Note also the presence of positive _z, which can

only appear in the BP through viscous diffusion owing to flow symmetries. The contours of vorticity

in the RP are complicated, with several regions that have both signs of all components present. At this

16These filament-like regions are actually vortex sheets, for there is little spanwise variation over several of their

thicknesses.
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Figure 22. Contour plots of all vorticity components in the BP and the RP of HIROLL at t = 14.9 (_Vz

and _vu are zero in the BP). Contour increment is 4-1.0. Shaded regions indicate regions of positive Wz,

solid contours indicate positive vorticity, dotted contours indicate negative vorticity, and tic marks are

at _50 intervals.
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spanwiselocationthelayer appears"turbulent,"althoughthesymmetriesarepreserved.In Part 2 it will
be seenthatflow featureslike thosein figure22 areindeedassociatedwith thetransitionto turbulence.

Thedevelopmentof Aij for three low-wavenumber modes in LOROLL, ROLLUP, and HIROLL is

shown in figure 23. The initial three-dimensional disturbance energy in HIROLL is larger than that of the

two-dimensional fundamental, as can be seen by comparing the initial levels in figures 23(a) and 23(b).

It is large enough to significantly reduce both asat and rr. On the other hand, the evolution of AI0 for"110

LOROLL is indistinguishable from that of the corresponding two-dimensional case (2D500), as shown

in figure 23(a). Remarkably, the curves describing the time development of AOl and All (figs. 23(b),

23(c)) are nearly parallel for all the cases (at least up to "rr). Apparently the three-dimensional modes

are interacting linearly with the mean flow and with the two-dimensional modes up to this point, the

constant ratio between the curves being determined by their initial ratio. For all cases, All becomes

greater than A01 at t _, 8.

The mid-braid spanwise vorticity, mid-braid strain-rate, and momentum thickness are shown in

figure 24. The behavior of these quantities in LOROLL is intermediate between the results described

for ROLLUP and the corresponding two-dimensional flow, with 6m being virtually identical to the

growth in the two-dimensional flow until to. The behavior of these quantities in HIROLL shows

qualitative differences. The momentum thickness grows rapidly from t = 0 and becomes larger than

that of ROLLUP. This is due in part to the wide extent of vorticity in the braid region (which makes

the average-layer thickness greater), but mainly to the fact that the stronger ribs push much of the

10
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Figure 23. Time development of (a) A10, (b) A01, and (c) All for ROLLUP, LOROLL, HIROLL, and

the corresponding two-dimensional flow (2D500).
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Figure 24. Time development of (a) mid-braid spanwise vorticity, (b) mid-braid strain-rate, and (c) mo-

mentum thickness for ROLLUP, LOROLL, HIROLL, and the corresponding two-dimensional simulation

(2D500).

layer farther from the centerline (note the BP coz shown in fig. 20(a) is almost entirely above the

centerline). The mid-braid spanwise vorticity magnitude initially decreases more rapidly (because of

faster corrugation of the layer), but then increases, reaching a local maximum as vortex stretching

temporarily outpaces removal from the braid region. After 7-r, cob behaves erratically, as might be

expected from the complicated structure shown in figure 22. From the definition given in section 3.2

(time at minimum Iwbl),7-0= 12.1 for HIROLL (fig. 24(a)). However, in this case the internal rib-

vortex dynamics, not the reentry of spanwise vorticity into the braid region far from the centerline, are

responsible for the increase in wb magnitude at t = 12.1. The time 7-reentry is about 14.5 in this flow,

in closer agreement with 7"0 from LOROLL and ROLLUP. The mid-braid strain-rate (fig. 24Co)) shows

a local maximum at t _ 5, which is related to the increase in mid-braid vorticity at this time. By 7"0,

the same plateau level attained in the ROLLUP simulation is reached. For late times, the strain-rate is

large and erratic, like cob.

The vorticity extrema for the three cases are shown in figure 25 (the minima of cox and coy are

equal and opposite to the maxima because of flow symmetry). The strong vortex stretching in HIROLL

has generated peak spanwise vorticity levels that are more than 10 times the initial peak level (this flow

requires a finer computational mesh because of this). Also, the positive coz level increases sooner than
in ROLLUP. LOROLL, on the other hand, does not develop any significant positive Wz until t > 7"0. In

addition, vortex stretching has only increased the peak negative Wz by 30% at t -- 7-0 (reflected in the
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Figure 25. Time development of vorticity component extrema for ROLLUP, LOROLL, and HIROLL.

Note that tOxmin and Wymi n are equal in magnitude but opposite in sign to Wxmax and Wymax.

weak cup vorticity of fig. 19(a)). Although the extrema of _ox and wy reach similar levels for HIROLL

and ROLLUP, they remain less than 1.0 until after 7-0 for LOROLL.

Up to about To, the mid-braid streamwise circulation _F'MP (fig. 26) differs among the cases by

a roughly constant factor (which, as with Aij, is set by the initial condition). 17 In all cases, there

is a sudden increase in FzMP when the spanwise vorticity (wisp 1) reenters the MP (at 7-0, except for

in HIROLL, where "rreentry _ 14.5). The circulation evolution after 7-0 shows a qualitatively similar
increase for the LOROLL and ROLLUP simulations. For HIROLL, however, the circulation oscillates,

does not reach 3 times its plateau value (sec. 4.2.3), and by t = 20 is actually less than the plateau
level. 18

The slow, roughly linear growth of the LOROLL _x and wy extrema is qualitatively different from

that of the other cases. As noted above, this is because the MP w:r (fig. 19(c)) does not collapse into a

compact vortex. The Lin and Corcos (1984) model described in section 4.2 predicts the kind of pattern

shown in figure 19(c) for low values of Fri b. From their model problem, two important parameters are

17Note that this is also true of the circulation-based collapse parameter £ described below.

18Note that this plateau level is about 4 and is already almost 30% of Fz. A factor-of-three increase would require

virtually all of the vortex filaments to cross the MP.
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Figure 26. Time development of streamwise circulation in the MP (/-,MP) for ROLLUP, LOROLL, and

HIROLL.

derived. These are the nondimensional circulation strength,

1"* = Fri----_-b
sA]

(16)

(S being the mid-braid principal strain-rate) and the aspect ratio,

Az

A R = "_a
(17)

(6a = ¢7rv/(2S), a strain-diffusion equilibrium length scale). For F* << 1 and A R >> 1, they expect

"substantial collapse" for F'An > 0.43. For more typical values of F* and A R this simple criterion

must be generalized. Their curve (shown in their fig. 9) for substantial collapse is well described by

F*A}_365 = 1.45 (18)

By substituting the definitions given above, this yields

f_ = ]"rib
S0.3175A0.6350v0.6825 > 13.1

(19)

It should be noted that increasing the rib circulation and the Reynolds number improves the chance of

collapse, whereas increasing the two-dimensional strain-rate and the spanwise wavelength reduces the

chance of collapse. Of these effects, the circulation is of primary importance; the Reynolds number

and spanwise wavelength are somewhat less significant, and changes in the two-dimensional strain-rate

have only a minor effect on Z;. In the two-dimensional Lin and Corcos model problem, all of the

quantities entering the definition of/2 are constant during their flow evolution. In the three-dimensional

mixing layer, -Prib and S vary as the flow evolves. The value of l"ri b typically increases because of the

conversion (turning) of Wz into _x by the vortex-stretching term (with a particularly large increase after

to), and S decreases as Wz (which contributes to S) is removed from the braid region.
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Figure 27. Time development of the Lin and Corcos collapse parameter £ for (a) cases that exhibit

collapse, and (b) cases that exhibit marginal (WYROLL) or no collapse. The horizontal lines at/Z = 13.1

represent the Lin and Corcos collapse criterion.

The time evolution of £ for all the STI disturbance simulations listed in table 2 is shown in

figure 27. Here, the streamwise circulation FzMP is used in place of Fri b. Because the ribs have a

nonzero extent in y, this substitution is not exact (in the limit of zero vertical rib extent Fri b = l_zMP,

because dFri b = WribdArib ---- wz dAz). However for the cases considered here, this error is small

because the "ribwise" variation of wz over distances comparable to the rib thickness is small. By

examining the MP vorticity and passive scalar contour patterns, it was determined that the cases shown

in figure 27(a) do exhibit substantial collapse (see also re given in table 2). The cases shown in

figure 27(b) either undergo partial collapse (WYROLL) or show no evidence of collapse (at least before

to). All the flows that exhibit clear collapse have /_ > 13.1 well before the roll-up is completed.

Those exhibiting partial collapse achieve this critical level after t _ 8, by which time the roll-up is

nearly complete. The LOWRE and LOROLL simulations, in which the ribs do not collapse, do not

have £; > 13.1 until t > to. Despite the fact that the evolution of Z_ in the WIDEROLL simulation

is similar to that in the WYROLL simulation, the ribs in the WIDEROLL flow do not show even

the marginal collapse observed in WYROLL until well after to. Lin and Corcos found that the time

required to achieve collapse increases rapidly as f'* decreases. Thus, the larger Az in WIDEROLL

results in a smaller F* and a larger time until collapse, in agreement with the current results. In

general, examination of figure 27 indicates that the Lin and Corcos criterion is accurate in determining

whether the ribs collapse, and indicates that their two-dimensional model problem does indeed capture
the essence of the mid-braid flow evolution.

Figure 28 contains MP views of a passive scalar quantity taken from the LOROLL (noncollapsed)

and ROLLUP (collapsed) simulations at t ._ to. Again, the patterns are virtually identical to those

predicted by Lin and Corcos (see their figs. 12, 13). Although the streamwise vorticity associated with

the noncollapsed case is too weak to induce more than a mild bending of the scalar contours, that of

the collapsed case has generated mushroomlike patterns by wrapping the scalar around the ribs. Flow

visualization in experimental mixing layers has indicated the presence of similar mushroom-shaped

patterns, which suggests that to produce such collapsed ribs, experimental disturbance levels must be

of the same order as in ROLLUP, or larger.
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Figure 28. Contour plots of the passive scalar (T) in the MP with contour increment 0.08 from 0.02

(bottom) to 0.98 (top). Tic marks are at _ intervals.

4.3.2 Initial Reynolds number- Reduction of the initial Reynolds number from 500 to 100

leads to changes similar to those observed for the two-dimensional cases described in section 3.2. The

momentum thickness initially increases more rapidly, a result of viscous diffusion, but later the layer

thickness is less than that of the Re 0 = 500 case. The mid-braid strain-rate decreases more rapidly

initially, but reaches about the same asymptotic level. The decrease of -w b is enhanced at early times,

but the value at 7"0 is larger in magnitude. This and the fact that -w b does not undergo a sudden increase

at 7-0 (but rather has a smooth, rounded minimum) are similar to the behavior of the two-dimensional

case shown in figure 4(a). The energies AI0, A01, and All all grow at slower rates and saturate at lower

values for the Reo -- 100 case. Again, similar behavior is observed (for A10) in the two-dimensional

simulations.

Reducing Reo also reduces the effects of vortex stretching and the associated three-dimensionality.

The evolution of the vorticity extrema for the LOWRE simulation (identical to ROLLUP in all respects

except for Reo) is compared with that of the ROLLUP simulation in figure 29. The peak negative Wz

is reduced owing to the enhanced viscous diffusion. The appearance of positive Wz is also delayed and

its growth rate is smaller. Similarly, the wx and wy extrema are reduced. In general, the behavior of

the low-Reynolds-number simulation is similar (in terms of the extent of three-dimensionality) to the

LOROLL simulation begun from weaker initial three-dimensional disturbances.

The growth of FzMP in LOWRE is reduced for t > "ro (fig. 30(a)). The reduced ability to remove

Wz from the mid-braid region and the lack of a sudden reentry of Wz into the mid-braid region have

made the growth at t = "ro more gradual in the LOWRE case.

As in the two-dimensional layers, the larger viscosity in the LOWRE simulation tends to fatten the

vortical structures present in the flow. The roller is fattened, and this results in a short braid region. The

viscous-strain equilibrium length scale is greater than that of the ROLLUP simulation, and this prevents

the cups from becoming as thin as they do for that case. The rib vortices remain broad and are only

marginally collapsed by 7"0. This Reynolds number dependence is in agreement with the Lin and Corcos
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Figure 29. Time development of vorticity component extrema for ROLLUP, LOWRE, and WlDEROLL.

Note that Wzmin and Wymin are equal in magnitude but opposite in sign to Wxmax and Wymax.

a) ROLLUP //_

........LOWRE // .,."..-" :'

.... WIDEROLL // ..')/')" /
----- WYROLL ,/._';;.""
--- VGaOLL

!/,..';_/
J, ."I '

_p2.'_-__ .....

5 10 15 20

t

(b) //
ROLLUP / ,(/
DELAY / /!

_._ LOWDEL f/

1'0 15 20

t

Figure 30. Time development of the streamwise circulation (]-,MP).
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model, as evidenced by the LOWRE curve in figure 27(b). Even when collapse does occur (stronger

initial three-dimensional disturbances, longer flow-development times), the resulting mushroom patterns

(as visualized by a passive scalar) are fat and not well separated in the spanwise direction.

4.3.3 Spanwise wavelength- The WIDEROLL simulation is identical to ROLLUP except for

the spanwise disturbance wavelength, Az. Instead of the "most unstable" spanwise wavelength of about

0.6Ax, Az was made equal to Az. The initial circulation of the three-dimensional disturbance is the

same as in ROLLUP, but the circulation growth is less (fig. 30(a)). This is consistent with the lower

growth rate of disturbances with this wavelength.

In general, the WIDEROLL mixing layer is intermediate between the ROLLUP layer and the corre-

sponding two-dimensional flow; in other words, widening the spanwise domain is roughly equivalent to

reducing the initial three-dimensional disturbance amplitude. In WIDEROLL, the layer thickness does

not grow as rapidly as in ROLLUP, but it does grow faster than the corresponding two-dimensional

layer. The appearance of positive Wz is delayed (until t > To), and the peak negative vorticity is only

1.3 times its initial peak level by t = 7"0 (fig. 29). At ro the levels of wx and Wy in ROLLUP are

roughly 4 times those of WIDEROLL. The similarity of the extrema for the LOWRE and WIDEROLL

cases indicates that a similar reduction in three-dimensionality can be achieved by reducing either Re 0

or increasing Az.

Figure 27(b) shows the development of £ for the WIDEROLL simulation. From the Lin and Corcos

(1984) model one would expect "partial or doubtful collapse" because £ does not reach the critical value

of 13.1 until the roll-up is nearly complete. Examination of the MP indicates that this is indeed the case.

It appears that the extent of three-dimensionality achieved by variation of F O (sec. 4.3.1), v (sec. 4.3.2),

and ,_z (sec. 4.3.3) is well predicted by the Lin and Corcos model.

4.3.4 Two-dimensional disturbance amplitude- In the simulations described above, the circula-

tion F MP at t = 7.0 is larger than F 0 by a factor ranging from 2.4 to 3.8. This increase is accomplished

by the action of vortex stretching, which turns some of the Wz in the braid region into wz. This process

eventually stops when the spanwise vorticity is depleted from the braid region (leaving a roughly con-

stant value of F MP for rr < t < 7.0). By decreasing the amplitude of the two-dimensional fundamental

disturbance, the roll-up and the associated removal of braid Wz are delayed. It might be expected that

the value of F MP could reach higher levels under these circumstances.

To test this hypothesis, and to examine other effects of a delayed roll-up, a simulation (DELAY)

identical in all respects to ROLLUP except for the initial value of A10, was run. The amplitude AI0 was

reduced to 40% of its value in ROLLUP. Although the growth rate of A10 is initially (and for several

time units) the same in the two simulations, the lower value at t = 0 in the DELAY simulation causes

the ftow to take about 2.5 time units longer to reach the same value of A10. However, _10asatis lower in

DELAY than in ROLLUP, and for t > Tr the evolution of A10 is similar in the two simulations.

The values of rr and 7"0 in the DELAY flow are also about 2.5 units larger than their values in the

ROLLUP ftow (table 2). The circulation development of the two simulations is compared in figure 30(b).

As expected, the sudden increase in FzMP that happens at 70 occurs about 2.5 time units later in the

DELAY flow. It is also clear, however, that the value of £,MP (roughly constant for 7.r < t < 7.0) is

higher than that in the ROLLUP flow despite the fact that F ° is the same in both flows. The ratio
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FzMP(t = ro)/l_z is 5.2 in the DELAY flow, well above the range of values given above for this

parameter in the other simulations and 50% larger than the corresponding value in the ROLLUP flow.

Similar behavior is observed in the Lin and Corcos (1984) collapse parameter (fig. 27(a)); the growth

is delayed, but by t _ 10, £ becomes larger in DELAY than in ROLLUP. It is indeed the case that

delaying the removal of spanwise vorticity from the braid region has increased the circulation of the rib

vortices.

The growth of Wzmax and Wymax in the DELAY flow also lags that of the ROLLUP flow. However,

for these quantities the lag time is only about a single time unit. Thus, at the same time relative to rr

(or To), these extrema are larger in the DELAY flow than in ROLLUP.

The behavior of the Wz extrema cannot be predicted by a simple time lag. The initial appearance

of positive Wz in DELAY does indeed occur about one time unit later than in ROLLUP, but in the

developed DELAY flow, Wzmax is up tO twice the ROLLUP value (and is even larger if the flows are

compared at the same time relative to their respective rr values). The magnitude of Wzmin is generally

smaller in the DELAY flow. It is more informative, however, to compare the evolution of Wzmin at the

same time relative to the rr value in each flow (i.e., shift the DELAY curve 2.3 time units to the left).

When plotted in this way, Wzmin is greater in magnitude in the DELAY flow only up until a time about

four fifths of the way from rr to to. Before this, all DELAY vorticity extrema are larger (indicating

higher three-dimensionality), as would be expected from the larger rib circulation. After this, however,

the cup vorticity in DELAY is not as strong as that in ROLLUP even though the rib circulation remains

larger, apparently because the rib vortices do not remain confined to the RP for as long as they do in

ROLLUP. They become horseshoe-shaped (resulting in the larger peak positive Wz noted above) and do

not continue straining the same cup vorticity for as long as they do in ROLLUP.

4.3.5 Form of the STI disturbance- Other vertical profiles can be used for the (0, 1) mode

disturbance instead of the wG disturbance profile used in ROLLUP. In this section a comparison is

made with a run (VGROLL) identical in all respects to ROLLUP except that the same initial value of

l"z is obtained from an appropriately scaled vG disturbance. The vG disturbance contains wz of both

signs, with a peak in Wx at the centerline, which is higher than in the wG case, and two opposite-sign

wz zones above and below this central region. A comparison of VGROLL and ROLLUP indicates that

the flow evolution is not sensitive to the form of the initial disturbance. The VGROLL layer exhibits

slightly more three-dimensionality (as measured by the indicators described in the above subsections),

perhaps because the initial Wx extrema are slightly larger (as are the initial three-dimensional disturbance

energies). The circulation (fig. 30(a)), although initially the same as that in ROLLUP, is about 10%

larger at 7"0 (7"0 = 13.5 for both flows).

A subtle difference in the details of the three-dimensionality occurs in the VGROLL simulation.

Positive Wz occurs sooner and remains larger than in the ROLLUP simulation. Despite this apparently

enhanced three-dimensionality, the peak negative _Ozis not as large at late times (t > 7"0). This behavior

is similar to that described in section 4.3.4 for the DELAY simulation (which also has stronger ribs than

ROLLUP) and is associated with the more rapid deformation of the developed rib vortices.

4.3.6 The presence of Initial _y- In the simulations described so far, the wu vorticity component

was not initialized, but rather developed rapidly from the initial Wx disturbance. The simulation described

here (WYROLL) was begun from an _G disturbance in Wu with the same peak amplitude as the wG
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disturbanceof the ROLLUP simulation (0.2618). The streamwisevorticity, wx, was initially zero

throughout the domain (implying F ° = 0). To maintain a solenoidal vorticity field, the spanwise

vorticity distribution had to be adjusted (by an amount Owy/Oy). Because the wu was placed in the

(0, 1) STI mode, this adjustment created COWz/aZ, and the spanwise vorticity distribution was no longer

initially two-dimensional.

The WYROLL simulation exhibits less three-dimensionality than the ROLLUP case. The layer

spreads at a reduced rate, the mid-braid strain-rate S decreases more slowly, Wz is removed at a slower

rate from the mid-braid region, positive Wz forms later, and vortex stretching produces only about half

the peak wx, w u, and Wz levels. The circulation F MP, although initially zero, grows to about half the

value reached in the ROLLUP simulation by To (fig. 30(a)). The Fourier mode energies A10, A01, and

All lie between those of the ROLLUP and LOROLL simulations shown in figure 23 for most of their

evolution (the exception being A01 during an adjustment period up to t _ 7). In general, it appears

that an initial w u disturbance is about half as effective at generating three-dimensionality as an initial

wz disturbance of the same amplitude.

4.3.7 Wake component- Experimental spatially developing mixing layers typically form between

streams initially separated by a splitter-plate. The mean velocity profile just downstream of this splitter-

plate has a wake component resulting from the boundary layers on each side of the splitter-plate. To

compare our results with those of experiments it is necessary to know how the disturbance develops in

the presence of such a modified mean profile. Numerical simulations using initial mean profiles that

include a wake component show qualitatively the same behavior as those described above, if the wake

momentum deficit is small. For strong wake components, the layer development appears to be a hybrid

between the mixing-layer structure described above and that observed in plane wakes.

When a mean profile was used that was similar to that used by Sandham and Reynolds (1987), the

wake washed out of the mean profile before rr. Because the initial mean-velocity profile is asymmet-

ric, the point-reflection symmetry, equation (11), is broken. The RP vorticity contours are no longer

symmetric around the roller center. In addition, the ribs are no longer equally spaced in the spanwise

direction, but rather appear in negative/positive pairs as one moves in the positive spanwise direction,

with the distance between pairs greater than that between the ribs of a pair. This has also been observed

by Ashurst and Meiburg (1988), who used a vortex tracking simulation, and found experimentally by

Bernal (1981 ) and Bernal and Roshko (1986) (flow visualizations indicate spacing between "mushrooms"

is greater than mushroom width).

The presence of large gradients (owing to the splitter-plate boundary layers) results in strong initial

spanwise vorticity of both signs. To some extent, the weaker positive vorticity is simply passively

advected by the developing flow. Also, the rib vortex lines can undergo a viscous reconnection to form

closed vortex loops in this flow.

Although the details of the layer evolution can be different when a wake component is included,

the vortex dynamics described in the previous sections still dominate the layer development. The

two-dimensional roll-up progresses, removing vorticity from the braid region. Rib vortices strengthen,

collapse, and create strong cup structures. In the absence of subharmonics, oversaturation occurs as

described above. For large initial momentum deficits, the layer acquires some wakelike characteristics,

but for momentum deficits likely to be encountered in experiments (i.e., two boundary-layer velocity

52



profiles), the presenceof a mean-wakecomponentis not expectedto significantly changethe layer
development.

4.4 Oblique Initial Disturbances

In this section the effect of placing initial three-dimensional disturbance energy in the (1, 4-1)

modes (instead of in the (0, 4-1) modes) is examined. Although it is possible to initialize the (1, 1)

and (1,-1) modes separately, it is expected that in most experimental situations there would be no

preference between this pair of oblique waves, and they are initialized with equal amounts of energy.

Simulations begun from single oblique modes are discussed in section 4.4.4.

For the simulations considered here, the disturbance wavelengths and the initial Reynolds number

are the same as for the ROLLUP simulation, that is, /kx = 1.16(27r), _z = 0.6)_z, and Reo = 500.

The three-dimensional disturbance energy is placed in the (1,4-1) modes with a VE vertical profile

(unlike the STI disturbances, oblique three-dimensional disturbances have well-defined eigenfunctions).

Surfaces of constant wx resulting from such an initialization are shown in figure 31. Because Owz/Oz

is no longer zero, the initial spanwise vorticity field is no longer two-dimensional.

As mentioned in section 4.1, when considering a pair of oblique wave disturbances, the phase

relative to the two-dimensional disturbance must be specified. Here we will consider the two extreme

cases of relative phasing and a case halfway between them. The "in-phase" case (OBLIN) situates

X

Z

Figure 31. Surfaces of constant streamwise-vorticity magnitude of the oblique disturbance at t = 0.

Cross-hatched surfaces represent wx = -0.15, shaded surfaces represent Wx = 0.15, and tie marks are

at 6° intervals.
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the two-dimensionaldisturbancesuch that the spanwiseroller will form in the centerof the domain
depictedin figure 31. In this case,Fz is maximum both in the roller core and in the braid region. For

the "out-of-phase" case (OBLOUT), the two-dimensional disturbance is placed such that the spanwise

roller forms one quarter of the way through the domain shown in figure 31 (periodicity has been used

to center the roller in the domain for figures shown later). The MP and CP initially have Fz = 0 in

this case. The third case (OBLMID) is halfway between these two extremes (FzMP initially v'_/2 of

the value in OBLIN).

Although the eigenfunction for the linear stability problem has nonzero wu, Wy was set to zero

for the simulations described here to facilitate comparison with ROLLUP. The two extreme phasing

cases (OBLIN and OBLOUT) were also run with nonzero Wy in the initial conditions (as given by the

eigenfunction). The larger initial three-dimensional disturbance energy in these cases leads to more

three-dimensionality, but the flow evolution is qualitatively similar to OBLIN and OBLOUT. For these

cases All is initially greater than A10. However, as with the simulation begun from an w u disturbance

(discussed in section 4.3.6), A 11 decays initially and grows only after AOl reaches a significant amplitude.

By To, the Fourier mode energies of the simulations with and without Wy are similar, although Ai0 in

the w u simulations is reduced at late times owing to the enhanced three-dimensionality.

4.4.1 The In-phase ease-- Unlike the STI disturbance cases described earlier, for oblique initial

three-dimensional disturbances, Fz(t = 0) varies in the streamwise direction. The peak levels for the

in-phase case are found in the MP and CP. This peak level is taken to be the same as the initial value

of Fz used in the ROLLUP simulation, F°/l"z = 0.025.

The evolution of the in-phase case (OBLIN) is shown in figures 32 to 34. Formation of the cup in

the BP is shown in figure 32. At early times (fig. 32(a)), the intensification of the cup spanwise vorticity

and the depletion of spanwise vorticity in the rest of the roller core progress faster than in ROLLUP

(fig. 15(a)). By 7-0, however, the BP distributions of Wz are similar in form and magnitude (figs. 32(c),

15(c)). The vortex-stretching mechanism responsible for the generation of the cups is the same as that

in ROLLUP, and the CP wx distribution exhibits "quadrupoles" similar to those of figure 17. Wisps of

spanwise vorticity are also evident in the BP. In figure 32(c), the downstream wisp contains vortex lines

connecting the ribs, and the more upstream wisp contains vortex lines connecting sub-rib structures.

The development of the RP Wz is also similar to that in the ROLLUP simulation (fig. 15). Again,

however, the early development is more rapid. By t = 4.5, sections of the two cups on either side of

the RP are already visible in that plane. By 7-r, there is more positive Wz in the RP than in ROLLUP,

but by To, the RP OJz is similar to that of figure 15(f).

Streamwise and vertical vorticity contours in the RP resemble those of ROLLUP (fig. 11) but again

OBLIN develops more rapidly. At early times, the Wx and Wy levels are higher, and the opposite-sign

core vorticity is proportionately stronger. The fact that OBLIN initially develops faster than ROLLUP

might be expected from the structure of the initial condition. The distribution of streamwise vorticity

resulting from the initial oblique disturbance used for OBLIN corresponds more closely to the developed

state toward which the flow is evolving; that is, wz and wy in the roller core are opposite in sign to

Wx and wy of the rib at the same spanwise location. This leads to the earlier formation of the CP wx

quadrupoles, which in turn provides the stretching mechanism for cup generation earlier in the layer

development.
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Figure 32. Contour plots of spanwise vorticity in the BP of OBLIN. Contour increments are (a) -0.3,

(b) -0.5, and (c) -1.0. Tic marks are at _0 intervals.

The passive scalar field in the MP (fig. 33(a)) indicates that the rib streamwise vorticity has collapsed

as it does in ROLLUP. Because of flow symmetry, the rib spacing is uniform in this plane. In the CP

at the same time (fig. 33(b)), the rib cross sections are not equally spaced, implying that the ribs are

oblique. This can be clearly seen in figure 34(a)(at an earlier time). The ribs are thus not as confined to

the RP as in ROLLUP. Note that the CP Wz quadrupole mentioned above is also affected by the oblique

ribs, and the upper- and lower-rib cross sections are not centered above the core vorticity contours. By

"ro, the OBLIN ribs are directly above each other in the CP (fig. 33(c)). This is not the result of the

ribs returning to a single spanwise plane but rather of their assuming an S-shape, with the mid-braid

section still oblique but now with positive Wz (fig. 34(b)). The ROLLUP simulation ribs also become

S-shaped at this point (fig. 18(f)), but their tips are not above each other in the CP (fig. 17(c)).

The oblique ribs observed during the early development of the OBLIN simulation resemble the

ribs observed in experiments in which the domain width is not very large. This might be expected,

since end-wall effects could provide a mechanism to produce oblique-mode energy rather than the STI
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Figure 33. Contour plots of the passive scalar (T) in the MP and CP of OBLIN with contour increment

0.08 from 0.02 (bottom) to 0.98 (top). Tic marks are at 6° intervals.
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Figure 34. Surfaces of constant streamwise vorticity magnitude in OBLIN. Cross-hatched surfaces

represent negative wx, and shaded surfaces represent positive wx. Periodicity has been used to extend

the domain in both the streamwise and spanwise directions. Tic marks are at 6° intervals.
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disturbancespresumablygeneratedby upstream defects. Flow visualizations by Lasheras, Cho, and

Maxworthy (1986) show oblique ribs similar to those shown in figure 34(a) (see their figs. 10 and 14(c),

for example).

The evolution of AlO, Aol, and All is shown in figure 35.19 The growth of the two-dimensional

disturbance is similar to that in the ROLLUP simulation. The oblique character of the rib vortices is

reflected in the relative amplitudes of All and A01 (although it should be noted that these quantities

are also affected by the roller vorticity distribution). Amplitude All is initially dominant when the

ribs are oblique. Just after rr, All is overtaken by AOl, which is consistent with the ribs being on

average predominantly streamwise at late times. As indicated in figure 7, for initial STI disturbances,

All overtakes AOl before.'rr and stays larger for the remainder of the simulation. This is consistent

with the ribs in ROLLUP being more oblique at late times.

The evolution of the streamwise circulation at various streamwise locations is shown in figure 36.

As mentioned above, the initial circulation varies in x. However, the circulation dependence on stream-

wise location weakens as the rib is formed. By rr, the collapsed rib has the same circulation over

most of its extent. The eventual sudden circulation increase resulting from oversaturation occurs as

in ROLLUP. The evolution of FMP in the OBLIN simulation is compared with that of the ROLLUP

simulation in figure 37(a). Although the OBLIN circulation at t = 3 is 8% larger, by _'r it is just under

70% of the corresponding ROLLUP value. Perhaps it is for this reason that the ROLLUP simulation

can "catch up" to the OBLIN simulation (which exhibits faster cup formation and faster growth of _z

and Wy early on), resulting in similar flow fields at to. The Lin and Corcos (1984) collapse parameter

(fig. 37(b)) correctly predicts collapse for the OBLIN simulation (and for the OBLMID case discussed

in sec. 4.4.3).

,5
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/" , A01 (OBLIN)
t .... All (OBLIN)

I" ,
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Figure 35. Time development of low-wavenumber amplitudes for OBLIN; ROLLUP included for

comparison.

19The growth of All at early times is not exponential. There is a short adjustment period (see also fig. 49) because

of the lack of _vy in the initial condition. When the appropriate toy is added to the initial condition, All initially grows
exponentially without any adjustment period.
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Figure 36. Time development of streamwise circulation for OBLIN. Dashed lines are for various braid

region locations progressively farther from the MP as the curves move away from the solid line.
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Figure 37. Time development of (a) streamwise circulation (FMP), and (b) the Lin and Corcos collapse

parameter Z;. The solid line at/3 = 13.1 in (b) represents the Lin and Corcos collapse criterion.

The evolution of wb, ,..q, and 6m is shown in figure 38. The behavior of the OBLIN simulation is

similar to that of the ROLLUP case for all these quantities.

The vorticity extrema for OBLIN are shown in figure 39. The more rapid growth of the peak

negative Wz for OBLIN is apparent, but by ro the level is comparable to that of ROLLUP. By to, the wx

and wv extrema, although growing more rapidly early in the flow development, are only 20% larger than

those of ROLLUP. in general, although the early development occurs more rapidly, by ro the OBLIN

flow resembles the ROLLUP case.
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Figure 38. Time development of (a) mid-braid spanwise vorticity, (b) mid-braid strain-rate, and (c) mo-

mentum thickness for ROLLUP, OBLIN, OBLMID, and OBLOUT.

4.4.2 The out-of-phase case- The initial condition for the OBLOUT simulation described here

is identical to that of the OBLIN case described above except for the relative phasing of the pair of

oblique modes to the two-dimensional fundamental. In this case, the initial value of Fz is zero in both

the MP and CP, and it remains zero for all time because of flow symmetry. This precludes the possibility

of ultimately achieving the typical flow state described above. It does not, however, imply that wx and

Wy are zero in the MP and CP, but rather that they are antisymmetric in y. As expected, the evolution

of this case is markedly different from the simulations described above.

The early (up to t = 6.9, _'r = 9.9) evolution of streamwise vorticity in the RP is shown in figure 40.

The induced motion of the developing roller creates riblike structures, but these are qualitatively different

from the ribs in ROLLUP (and OBLIN). First, the rib streamwise vorticity is opposite in sign on the

upstream and downstream sides of the roller. This is unlike the typical evolution in which ribs of the

same sign form on both sides of the roller (at fixed z). Second, in the MP the ribs contain equal amounts

of wz of both signs (as noted above, this is imposed by flow symmetry in OBLOUT). The roller-core

streamwise vorticity becomes opposite in sign to that of the nearby rib as in the typical evolution, but

because the upstream and downstream ribs are of opposite sign, the core contains vorticity of both signs.

Again, flow symmetry requires that the CP wz distribution be antisymmetric. Beyond t = 6.9, the ribs

have largely moved out of the RP for reasons described below.
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Figure 39. Time development of vorticity component extrema for ROLLUP, OBLIN, OBLMID, and

OBLOUT. Note that Wzmin and W_tmin are equal in magnitude but opposite in sign to Wzrnax and Wymax.

The evolution of the MP wz distribution is given in figure 41 (the evolution of wu is similar). The

vorticity contours are antisymmetric in y, and therefore the circulation Fz in each spanwise half of the

domain is zero, as noted above. The induced motion of this periodic array of "vortex dipoles" moves

each one toward another dipole (a periodic image) of opposite sign (fig. 41(b)). The resulting quadrupole

is held near y = 0 by the compressive component of the two-dimensional strain field associated with

the developing rollers. Although the braid wz is initially strengthened by the expansive component

of the two-dimensional strain field, the large gradients developing in the quadrupole ultimately lead to

the viscous annihilation of the rib structures (fig. 41 (c)). The annihilation of the ribs leaves only core

vorticity. This core vorticity, however, is not two-dimensional.

Note that the movement of the ribs toward the spanwise domain boundaries in figure 41 is possible

because the point-reflection symmetry point is now located at these boundaries rather than in the RP. In

the STI disturbance simulations and in OBLIN, the ribs were anchored in the RP by the point-reflection

symmetry point located there. Phasings intermediate between OBLIN and OBLOUT (i.e., OBLMID)

do not possess any point-reflection symmetry.
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Figure 40. Contour plots of streamwise vorticity in the RP of OBLOUT (it is zero in the BP). Contour

increments are (a) 4-0.03, (b) 4-0.2, and (c) 4-0.3. Solid contours indicate positive vorticity, dotted

contours indicate negative vorticity, and tic marks are at 6° intervals.
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Figure 41. Contour plots of streamwise vorticity in the MP of OBLOUT. Contour increments are

(a) +0.02; and (b),(c) 4-0.3. Solid contours indicate positive vorticity, dotted contours indicate negative

vorticity, and tic marks are at 15° intervals.

At early times, the wz distribution in the CP is similar to that in the MP but of opposite sign

(fig. 42(a)). Again, each dipole moves toward a neighbor, this time meeting in the center of the

computational domain (forming a quadrupole of the same sign as the one in the MP). Unlike in the

MP, the dynamics in the CP are not primarily determined by the streamwise vorticity distribution and

the two-dimensional strain field alone. The spanwise vorticity of the two-dimensional roller plays an

important role in the CP, and the 0_z distributions become more complicated. By t = 4.4, streamwise

vorticity from farther up and downstream is drawn into the CP, creating two new outer lobes of _z

(fig. 42(b)). This vorticity has the opposite sign of that already present in the CP (again because the

initial distribution changes sign in z at fixed z). As the spanwise roller develops, core _z opposite in

sign to that of the nearby rib is formed (fig. 40(c)). This creates two new inner lobes in the CP (fig. 42(c))

and results in a pattern that is more complex than that associated with the typical flow evolution (six

lobes of Wz in each spanwise half of the domain rather than three; compare with figure 17(a)). 2° Shortly

after "rr, yet another pair of _a: lobes is formed near the centerline of the CP (fig. 42(d)).

Despite the more complicated CP wz distribution, a cup-generating mechanism similar to that of

ROLLUP still exists. However, in OBLOUT the cups form at the same spanwise location on both sides

of the roller. The early-time (up to t = 8.9, rr = 9.9) evolution of the spanwise vorticity in the CP

is shown in figure 43. The strong spanwise vorticity is present in regions that are being stretched by

the o_z distributions in figure 42. At t = 4.4 (figs. 43(a), 42(b)), this stretching is occurring at y = 0

near the spanwise boundaries (Wzmin = -4.2) and, to a lesser extent, at the outer edges of the layer in

the middle of the domain (Wzmin = -2.3). The "vortex compression" in the center of the CP reduces

the toz amplitude there (Wzmin = -0.9). At t = 6.9 (figs. 43(b), 42(c)), the opposite-sign core wz has

changed the stretching locations at the spanwise boundaries. At these locations, the centerline Wz is

now being reduced and cups are forming at y = -t-0.7, that is, on both sides of the layer. The _Oz at the

20At this point (and from here on) the CP wy distribution, although exhibiting a similar number of lobes in a similar

pattern, often has the opposite sign of ¢oz at the same location.

62



t

(a) t = 1.7
I I I I

iii !i!iii: i',,

(c) t = 6.9

¢¢ i#_iif_6 ;_:.:.:.::::"V ,:.:

(b) t = 4.4
I I I I

t, .._!_!_))_?:':::::::'"'""
._::......;.

(d) t = 10.2 ('rr = 9.9)
I I I I I I I I

g Z

Figure 42. Contour plots of streamwise vorticity in the CP of OBLOUT. Contour increments are

(a) +0.03, (b) -I-0.06, (c) -t-0.2, and (d) +0.3. In (b), there are two extra contours at -t-0.03 to show the

additional "lobes." Solid contours indicate positive vorticity, dotted contours indicate negative vorticity,

and tic marks are at _5° intervals.

center of the CP is now being stretched, and by t = 8.9 (fig. 43(c)), _zmin = -5.5 at this location. At

this time _zmin = -0.2 on the centerline at the spanwise boundaries.

The development of the spanwise vorticity in the BP is shown in figure 44. The two cups in

figure 43(b) can be seen in figure 44(a). As time progresses, these cups coalesce into a hoop-shaped

structure (fig. 44(b)). The interior of the hoop _s virtually irrotational (_-'z and _ are zero in the BP by

symmetry). Vortex stretching is responsible for this depletion, as noted above.
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Figure 43. Contour plots of spanwise vorticity in the CP of OBLOUT at early times. Contour increments

are (a),(b) -0.4; and (c) -0.5. Shaded regions indicate regions of positive Wz (opposite in sign to the

mean vorticity), solid contours indicate positive vorticity, dotted contours indicate negative vorticity,

and tic marks are at 6 ° intervals.

From this point on the layer evolution is quite complex and dominated by vortex stretching. The

new lobes of a;z in the CP at t = 10.2 (fig. 42(d)) once again switch the stretching and compression

locations. The hoops at the spanwise boundaries become weak, but a new hoop forms in the center

of the domain (fig. 45). From t = 10.2 (fig. 45(a)) to t = 11.5 (fig. 45(b)), a;zmin drops from -6.6

to -0.6 in the middle of the CP, and it is still decreasing in magnitude at t = 11.5. This relatively

short time scale is an indication of the strength of the vortex-stretching processes involved. At the same

time, vortex stretching at the centerline on the spanwise boundaries is creating strong a;z. By t = 14.0

(figs. 44(c), 44(d), 45(c)), Wzmin reaches -24.9 at this location, over 10 times its initial level. Again,

the fact that fluid in this region was nearly irrotational at t = 10.2 indicates how fast vortex stretching

can change the vorticity levels.

At t = 14.0, another pair of _z lobes (opposite in sign to what was there previously) forms in

the CP. The regions of stretching and compression change yet again, and a new hoop begins to form

on the spanwise boundary. This roughly time-periodic standing oscillation is illustrated in the three-

dimensional surface plots of _z shown in figure 46. The period of one complete cycle (from a hoop in

one BP, through its destruction, to re-formation of another hoop in the same BP) appears to be At ,_ 8.

At t = 14.0, it appears that the strong, thin Wz layer created in the BP (fig. 44(c)) is undergoing a

secondary, smaller-scale roll-up process of its own (fig. 44(d)). Examination of this vortex sheet indicates

that it is locally two-dimensional, extending over approximately half the spanwise domain (fig. 45(c)).

Its vorticity thickness is about one sixth that of the initial error-function profile. The expected most-

unstable disturbance wavelength for this vortex sheet is thus one sixth of the streamwise computational

domain extent, in agreement with the scale of the roii'up in figures 44(c) and 44(d)(the rectangle in

these figures has a streamwise extent of )_/6 and is centered on the small-scale roll-up). In the enlarged

view (fig. 44(d)), it can be seen that the roller proportions are similar to those in figure 44(a)(although it

appears two-dimensional). Because this layer is much thinner than the original one (and yet is subjected
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Figure 44. Contour plots of spanwise vorticity in the BP of OBLOUT. Contour increments are

(a),(b) -0.5; and (c),(d) -2.0. The box in (c) and (d) is the central one sixth of the streamwise domain.

Tic marks are at 6°_ intervals, except for in (d), where they are at intervals of 0.55 ° (3.05 ° _< x _< 4.55 °

and -0.56 ° < y < 0.550).

to nearly the full velocity difference across the original layer), its time scale for roll-up is shorter (of the

order of 1 to 2 time units for disturbances with amplitudes similar to those used in the initial condition).

Similar small-scale roll-ups have been observed in other highly three-dimensional flows.

The evolution of the Fourier mode energies for this case is different from that of OBLIN. The

growth and saturation of A10 is virtually identical to that of ROLLUP. Amplitude A1], although similar

to the OBLIN curve up to about t = 2, drops to about a third of the OBLIN level in the developed

state. Although A01 initially grows more rapidly in OBLOUT than in OBLIN, it is almost an order of

magnitude smaller by the end of the simulation. The absence of strong ribs is apparently responsible

for this reduced energy in the three-dimensional modes.

The evolution of the vorticity extrema, of the mid-braid statistics, and of the momentum thickness

is shown in figures 38 and 39 along with the results for OBLIN. As expected, the development of these

65



(b) t = 11.5

"0-::::

.! ..

•(i '::" -"
+. .......... .3

,/i"i::iii(_!@i,,_
...., i '.._¢:_;:._

_. "- ?"%. .:::> ::.

'-..:)?_,':_;3' _..............

(a) t = 10.2 (7-r = 9.9) (c) t = 14.0 (7-0 = 13.7)
I I I I I I

Z Z Z

Figure 45. Contour plots of spanwise vorticity in the CP of OBLOUT at late times. Contour increments

are (a) -0.6, (b) -0.3, and (c) -2.0. Shaded regions indicate regions of positive Wz (opposite in sign to

the mean vorticity), solid contours indicate positive vorticity, dotted contours indicate negative vorticity,

and tic marks are at 6° intervals.

quantities is different from that in the OBLIN case. As can be seen in figure 38(c), the absence of

developed rib structures seems to prevent the post-7-r layer thickening observed in the typical evolution

(indeed the layer thickness for the OBLOUT case is similar to the corresponding two-dimensional flow;

fig. 8(c)).

4.4.3 Intermediate phasing- The OBLMID simulation evolved from an initial condition halfway

between those of the OBLIN and OBLOUT cases. Its development is by far more similar to OBLIN

than to OBLOUT. Well-defined rib structures do evolve, and, associated with them, All and A0] both

become larger than A10 after t _ 16 (a behavior exhibited by OBLIN but not OBLOUT). The circulation

evolution (fig. 37(a)) parallels OBLIN at a lower level since the initial MP level is reduced for this

phasing. The layer thickness (fig. 38(c)) is intermediate between OBLIN and OBLOUT, but is closer

to that of OBLIN. The mid-braid strain-rate (fig. 38(b)), the mid-braid spanwise vorticity (fig. 38(a)),

and the vorticity extrema (fig. 39) are all closer to those of OBLIN as well. It seems that the "typical

evolution" is indeed typical and that the OBLOUT phasing leads to a singular flow evolution, analogous

to the two-dimensional subharmonic resonance phenomena (Riley and Metcalfe 1980; Monkewitz 1988)

in which two-dimensional pairings are significantly delayed for a narrow range of relative phasings of

the two-dimensional subharmonic to the two-dimensional fundamental.

This intermediate phasing does not have a point-reflection symmetry point, and therefore, the ribs

that evolve are not fixed at z = Lz/4 and z = 3Lz/4 (fig. 47). For the particular intermediate phasing

used here, the ribs form in +/- pairs (as one moves in the positive z-direction). Another intermediate

phasing exists that would form -/+ rib pairs. The spacing between pairs is nearly double the spacing

between ribs of a pair at t = 12.2 (a time between "rr and 7o). Similar behavior was observed in the

wake-component simulations discussed in section 4.3.7. Because the ribs are no longer equally spaced,

they have a net self-induced motion that moves them below the domain centerline in the MP (indicated

by the middle tic mark in figure 47).
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Figure 46. Surfaces of constant spanwise vorticity magnitude in OBLOUT. Tic marks are at 6° intervals.
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Figure 47. Surfaces of constant vorticity magnitude, rib vortex lines, and contours of the passive scalar

quantity in the MP of OBLMID at t = 12.2 (rr = 10.0 and To = 13.0). Cross-hatched surfaces represent

Wz = -4.0, and shaded surfaces represent x/w 2 + w 2 = 4.0. The rib structures contain wz and Wy of

the same sign, and the sign alternates in z (positive for the closest rib). Periodicity has been used to

extend the domain in both the streamwise and spanwise directions, and the same vortex lines go through

both of the counterrotating rib vortex pairs (concealed by the rib surface contour). Contour increment

for the passive scalar quantity is 0.16 from 0.02 (bottom) to 0.98 (top). Tic marks axe at 5° intervals.

4.4.4 Single oblique-mode initial disturbances- Two simulations (SOBL1 and SOBL2) with

single oblique-mode initial disturbances of different amplitude were made. AS mentioned above, for

this case there is no issue of phasing relative to the two-dimensional fundamental disturbance. Surface

contours of the initial wz distribution are shown in figure 48. Again, it should be noted that these

surfaces do not correspond to vortices, but rather simply indicate regions where the predominantly

spanwise-oriented vortex lines are slightly kinked. Also, because the Wx disturbance is oblique, the

initial _z distribution is three-dimensional.

It is immediately apparent from figure 48 that the spanwise flow symmetry found in the previous

three-dimensional simulations is no longer present. Because of this, the peak positive and negative Wz

(and Wy) will no longer have the same magnitude. Also, the All energy is no longer composed of equal

amounts of A+I and All. Here, only A+I has been initialized. The evolution of A_- 1 and All (along

with their sum All) is shown for the low-initial-amplitude simulation (SOBL1) in figure 49. The results

for the high-amplitude case up to about ro can be obtained by multiplying the ordinate scale by a factor

of 2 (the initial amplitude ratio between these cases), again indicating that the Fourier mode energies
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Figure 48. Surfacesof constantstreamwisevorticity magnitudeand somevortex lines of SOBL1 at
t = 0. Cross-hatched surfaces represent _z = -0.04, and shaded surfaces represent a:z = 0.04. Tic

marks are at 60 intervals.
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Figure 49. Time development of low-wavenumber amplitudes for SOBL1.
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are interactinglinearly with a few low-wavenumbermodes.The (1,-1) modeamplitude(All) grows
rapidly from energytransferthroughthe nonlinearwavenumbertriad involving (1, 1) (initialized) and
(2,0) (thefirst two-dimensionalharmonicresultingfrom interactionsof thetwo-dimensionaldisturbance
with itself) andthroughinteractionwith the meanflow. For t > 6 ('Jr = 12.5), it can be seen that A+I

and Ai] are similar in amplitude and are oscillating in time.

By placing the two-dimensional roller in the center of the domain in figure 48, it can be seen that

the streamwise location of wx relative to the roller at z = 0, Lz/2, and Lz is similar to that of OBLIN,

whereas that at z = Lz/4 and 3Lz/4 is like that of OBLOUT. It might thus be expected that these

simulations will result in some combination of characteristics of OBLIN and OBLOUT. In reality, it

seems that the OBLOL_ behavior dominates. Neither of the SOBL simulations forms well-organized rib

structures; therefore, they stay more two-dimensional than OBLIN (the Fourier mode energies resemble

those of the OBLOUT simulation where AI0 is greater than A01 and All for all time).

The flow evolution seems to be dominated by twisted vortex lines, with some regions being twisted

tighter (stronger vorticity) than others. Vortex lines in the rolled-up roller core are shown in figure 50

at times t -- 12.2 and t = 15.2. Their appearance is similar to that of a rope formed by several strands

that has been twisted so as to unravel the strands (weaken the vorticity) at some location. The position

of this unraveled section then propagates in the spanwise direction. The peak wX and wu occur in the

roller core and are the streamwise and vertical components of the "twisted" roller. The weaker wz and

w v present in the braid region are also associated with twisted vortex lines, not with streamwise rib
vortices.

y Y
X

X

(a) t = 1_

z (b) t = 15.2 z

Figure 50. Vortex lines through the roller core of SOBL1. Tic marks are at 6° intervals.
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4.5 Combinations of Streamwise and Oblique Initial Disturbances

Three simulations were run from initial conditions with energy in both the oblique (1,4-1) modes

and the streamwise (0, 1) mode. The first, OBST1, was begun from the same initial condition as OBLIN

for the oblique modes and enough energy in the (0, 1) mode to result in zero streamwise vorticity in the

MP. The initial streamwise vorticity distribution for this case thus has maximum amplitude in the roller

core, is zero in the MP, and has the same sign in z at any given z-location. The initial disturbances in

OBST2 were phased to produce maximum streamwise vorticity in the MP and zero streamwise vorticity

in the mid-roller. Again, streamwise vorticity at a given z-location has the same sign in z. This phasing

results from combining the STI disturbance used for OBST1 with the negative of the OBLIN initial

condition. Finally, OBST3 combines the initial disturbances used in OBLOUT with the same (0, 1)

mode disturbance used in the other OBST simulations. The result is an initial ¢vz distribution that is

zero at x = Ax/4, of maximum amplitude at x = 3Ax/4, and at the same intermediate level in both the

mid-braid region and the roller core.

All three simulations lead to flows that are similar to the typical flow evolution described in

section 4.2. This is perhaps expected of OBST2, which was begun from an initial condition that

combined disturbances that both led to the typical evolution by themselves. The initial condition for

OBST1 also consisted of a combination of initial disturbances that individually lead to the typical

evolution. However, since the initial condition had no streamwise vorticity in the mid-braid plane, it

might be thought that the evolution would be more like that of OBLOUT (which also initially has

F MP = 0). The fact that OBST3 also evolves typically implies that roughly equal energy in the STI

(typical) and OBLOUT (atypical) modes in the initial condition leads to domination by the typical

behavior. Addition of wy to the initial condition does not significantly alter the flow evolution.

Unlike most of the other simulations described so far, which have two flow symmetries, the OBST3

flow exhibits only one. 21 This is because the point-reflection symmetry points for the OBLOUT and

STI (i.e., ROLLUP) disturbances are at different locations; thus, their combination does not possess

any point-reflection symmetry. The spanwise plane-reflection symmetry is still present, however. In

the absence of a point-reflection symmetry point at the y = 0 mid-braid location in the RP, the rib

midpoints are not constrained to remain at the quarter-domain locations as in the ROLLUP and OBLIN

simulations. The ribs in the OBST3 simulation do not move all the way to the boundary as they do in

OBLOUT and do not remain at the quarter-domain locations as in ROLLUP. Instead, they move partway

toward the domain boundary, but continue to develop "typically." This results in -/+ rib pairs (again,

as one moves in the positive z-direction) and is similar to the rib structure of the wake flows described

in section 4.3.7 and the OBLMID flow of section 4.4.3, where the point-reflection symmetry was also

broken. For the relative STI/oblique mode energies used in OBST3, the effect is small, the spacing

between rib pairs being only about 25% larger than the distance between the ribs. Presumably, increasing

the initial oblique energy while using the same initial STI energy (i.e., approaching the OBLOUT flow)

would increase this number until, as in OBLOUT, healthy ribs could no longer be sustained.

21The other single symmetry flows were discussed in sections 4.3.7 and 4.4.3, in which the point-reflection symmetry
(eq. (11)) is broken, and in section 4.4.4, in which there is no plane-reflection symmetry (eq. (10)).
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5 SUMMARY AND DISCUSSION

The simulations described in sections 3 and 4 provide a detailed description of the evolution

of a plane mixing layer through the first Kelvin-Helmholtz roll-up. The results are also relevant to

forced experimental mixing layers, where pairing is suppressed. In this section, the results are briefly

summarized, and inferences that can be made from these results are discussed.

As discussed in section 2.1, the simulations presented here are of a temporally evolving mixing

layer, though spatially developing layers are more usual and of greater technological relevance. The

temporally evolving layer was selected because of its computational advantages and because it provides

a simpler model for the evolution of the plane mixing layer and yet exhibits the same vortex dynamics

as the spatially evolving case (Buell, Moser, and Rogers, to appear). In particular, the temporally

evolving mixing layer supports two symmetries, one of which is not present in the spatially developing

flow. These symmetries make the analysis of the results in section 4 considerably simpler by allowing

the unambiguous definition of the rib circulation and the precise definition of the fib-vortex position.

Furthermore, even when the symmetries are broken (secs. 4.3.7, 4.4.3), the same flow structures result.

Thus, the inferences to be drawn in the following paragraphs should also be applicable to spatially

developing mixing layers.

It is known that the plane mixing layer is sensitive to initial (or inlet) conditions. Unfortunately,

there is little detailed experimental information available about the inlet conditions existing in mixing-

layer facilities. The simulations reported in the previous sections used deterministic low-wavenumber

disturbances chosen to mimic those expected in experimental mixing layers. These include the two-

dimensional "roll-up" disturbance and streamwise invariant (STI) vorticity disturbances. In addition,

the disturbances were selected because they lead to the types of structures commonly observed in

experimental mixing layers (spanwise rollers and streamwise ribs). 22 It was found that the dynamics of

the evolution of the mixing layer were insensitive to reasonable variations in many of the parameters

describing these initial disturbances (e.g., functional form in y, wavelength, and initial amplitude of the

disturbance; the initialization of different vorticity components; and the presence of a wake in the initial

velocity profile).

5.1 Typical Evolution

Despite the fact that the details of the mixing-layer evolution are sensitive to the initial condition

chosen, a large number of simulations, begun from different initial conditions, exhibit a "typical evolu-

tion." In agreement with many experimental observations (e.g., Breidenthal 1981; Bernal and Roshko

1986; Lasheras, Cho, and Maxworthy 1986; Lasheras and Choi 1988), such flows develop a corrugated

spanwise roller and predominately streamwise rib vortices. By the completion of the Kelvin-Helmholtz

roll-up (rr), the vorticity in the rib vortices is collapsing in the sense of Lin and Corcos (1984) into

compact, nearly circular vortices (see rc in table 2 and fig. 13(b)). The vortex lines that connect the

ribs are kinked in the same direction as the initial perturbation. However, the roller vortex lines are

bent in the opposite direction. Because of this, the streamwise and normal vorticity located in the roller

22Note that long-wavelength phenomena, for example, dislocations (Browand and Troutt 1980), are not studied here.
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has the oppositesign of that in the ribs at the samespanwiselocation. At the "bends" of the corru-

gated spanwise roller, cup-shaped regions of intense spanwise vorticity form. These cups are created

by vortex stretching resulting from the strain field produced by the bent roller and the rib vortices. The

opposite sense of bending in the ribs and the roller is critical to forming the strain field that produces

the cups. These cups alternate from the top to the bottom of the layer in the spanwise direction and

exhibit peak vorticity levels that can be over 5 times the peak vorticity level of the initial mean profile.

The spanwise roller is thus highly three-dimensional. The strong three-dimensionality of the rollers

has important consequences for the development of the flow during a pairing (it leads to small-scale

transition, as will be shown in Part 2).

The vortex lines of a rib connect to neighboring ribs of opposite-sign vorticity through a wisp of

diffuse spanwise vorticity between the ribs. This wisp is on the opposite side of the layer from the

cups, well removed from the main roller vorticity. Wisp vorticity and consequently the rib vortex lines

do not get drawn into the main roller; instead, they are convected over the roller into the next braid

region. This lack of connection between the roller and rib vortex lines is contrary to the speculated

interaction of the ribs and rollers (Hussain 1983; Bernal and Roshko 1986; Lasheras and Choi 1988).

Entry of wisp vorticity and rib vortex lines into the neighboring braid regions is largely responsible

for the sudden increase in rib circulation that occurs in these flows. However, in these single roll-up

simulations, this is a consequence of oversaturation. When a pairing is allowed (see Part 2), a similar

phenomenon occurs, but the details are different. As the rib vortex lines are drawn over the roller, they

become convoluted. Typically, they become horseshoe-shaped at the tips, creating regions of spanwise

vorticity opposite in sign to that of the initial mean profile; they may become twisted or helical as well.

This development of opposite-signed spanwise vorticity is one indicator of a highly three-dimensional

layer with collapsed ribs.

Because of the ribs, the typical three-dimensional flow spreads more rapidly, particularly at late

times, than the two-dimensional layer. The ultimate state of these flows is very three-dimensional (even

though begun from weak three-dimensional disturbances), and the three-dimensional Fourier mode

amplitudes overtake the two-dimensional fundamental amplitude in the oversaturated state (after ro).

5.2 Sensitivity to Initial Conditions

Although the mixing-layer evolution discussed above is insensitive to variations of many initial

condition parameters, there were simulations that exhibited qualitatively different behavior. One of the

initial parameters that can affect such changes is the circulation of the streamwise vorticity disturbance.

When the circulation is too low (the LOROLL simulation, sec. 4.3.1), the rib vortices do not collapse

in the sense of Lin and Corcos (1984). Such uncollapsed vortices do not induce a significant distortion

of the passive scalar contours and therefore cannot be responsible for the mushroom-shaped patterns

observed in flow-visualization experiments (e.g., Bernal and Roshko 1986). Thus, experiments that

exhibit these mushrooms must have large enough rib circulations to produce collapsed vortices. In

experiments in which flow visualization does not indicate the presence of rib vortices (e.g., Thorpe

1971, 1985; some flows in Lasheras, Cho, and Maxworthy 1986), noncollapsed vortices may, in fact,

be present. The circulation required to produce collapsed ribs is well predicted by the Lin and Corcos

(1984) collapse criterion.
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Resultspresentedin section4.3.1 indicatethat thecirculation attainedby theribs dependson the
strengthof the initial three-dimensionaldisturbance.This is becauseinitially (beforeto), the circulation

can grow only until the spanwise vorticity is depleted from the braid region, thus Iimiting the growth in

circulation. This dependence of the late-time rib strength on the initial disturbance amplitude is contrary

to the concept of an instability, in which one expects the saturated state to be independent of the initial

disturbance strength (see sec. 5.3).

Very large initial three-dimensional disturbances also produce qualitatively different flow evolutions

(HIROLL, sec. 4.3.1). In this case, the rib vortices have complicated internal dynamics, and the roller

core is more complex than the simple cup structures. This leads to an apparently turbulent state at late

time. Further, the rib vortices are larger in diameter and produce scalar mushroom patterns that are

more pronounced and fatter. It is not clear if these differences in the scalar mushroom pattern would

be clearly discernible in flow visualizations. If they were, one could bound from above the circulations

present in experiments. Thus, we tentatively conclude that the rib circulations present in the experiments

cited here are of the same order as the plateau level in our baseline (ROLLUP) simulation (within a

factor of 4). This range of circulations (0.018Fz to 0.3Fz) covers the early-development circulation

estimates of 0.07/"z and O.11"z by Bell and Mehta (1990) and Jimenez (1983), respectively. Note that

Jimenez (1983) and Jimenez, Cogollos, and Bernal (1985) are widely quoted as having circulation levels

of order 1-'z, but this is for the late stages of development (after several pairings and mixing transition).

As an obvious extension to the STI vorticity disturbance discussed above, oblique Fourier modes

were also used. Such disturbances are relevant because they develop rapidly from the STI modes

interacting with the two-dimensional roll-up, and because they are suggested by the linear stability

studies of Pierrehumbert and Widnall (1982). Except in one special case, flows with such disturbances,

or with such disturbances combined with STI modes, also evolve according to the standard scenario

followed by the STI cases (see secs. 4.4.1, 4.4.3, 4.5). The most notable exception is a particular phasing

of the oblique modes relative to the two-dimensional fundamental (OBLOUT, sec. 4.4.2). Pierrehumbert

and Widnall (1982) referred to this type of disturbance as the "bulging" mode and found it to have no

appreciable instability.

In OBLOUT, the streamwise vorticity circulation at the mid-braid location is identically zero for

all time. An antisymmetric double-rib structure forms initially in the rib plane (RP), but is convected

by its own self-induced motion toward another double-rib structure of opposite sign. The resulting

quadrupole is held in place by the compressive component of the roller strain field and eventually is

viscously destroyed. The roller behavior for this case is also different. Cuplike structures form on both

sides of the layer at the same spanwise location and eventually coalesce to form a hoop of spanwise

vorticity with a nearly irrotational core. This "hooped" roller then undergoes a quasi-periodic standing

oscillation whereby hoops are destroyed and re-formed at locations halfway between the original hoops

by strong vortex stretching.

This atypical evolution has not been observed experimentally. There are two possible explanations

for this. First, the OBLOUT case appears to be a singular case; that is, if other modes (e.g., STI modes)

are present, or if the phasing is not sufficiently close to that of OBLOUT, then the standard evolution

occurs. Thus, experiments would be unlikely to have inlet conditions that would lead to the OBLOUT

evolution. Second, even if this atypical evolution were to occur in experimental mixing layers, it would

probably be difficult to detect by the standard flow-visualization techniques.

74



5.3 Instability Mechanisms

It is instructive to see how well previous theoretical predictions and experimental inferences agree

with the results presented here. The most widely cited results on the secondary instability of mixing

layers are those of Pierrehumbert and Widnall (1982). Pierrehumbert and Widnall found the unstable

three-dimensional eigenmodes of a two-dimensional time-independent base flow (Stuart (1967) vortices).

For linear disturbances of the type discussed here, they found that the flow was unstable to a "translative"

instability. The strength of the instability is only weakly dependent on the spanwise wavelength. Also,

visualizations of the spanwise vorticity of the eigenfunction (see their fig. 8) can be interpreted as

the kinking of the spanwise roller and, in light of the current results, the beginning of cup formation.

Pierrehumbert and Widnall do not show the streamwise vorticity of the eigenfunction, so we have

repeated their calculation using the standard wavelengths reported here (Ax = 1.16(27r), Az = 0.6Az)

with their choice of the Stuart vortex-core size parameter (p = 0.25 in their notation, see their eq. 1).

This value of the core-size parameter was found by Browand and Weidman (1976) to give a reasonable

representation of ensemble-averaged experimental roller-core vorticity distributions. Our computations

yielded the same growth rates as those of Pierrehumbert and Widnall. The eigenfunctions do indeed

indicate that there are rib vortices with vortex lines kinked opposite to those in the core. However, there

is a problem with these computed eigenfunctions (both ours and those of Pierrehumbert and Widnall).

An analysis of the stability equations near the symmetry point in the middle of the ribs suggests that the

streamwise and cross-stream vorticity of the eigenfunction are singular there. Such a singularity makes

it impossible to represent the eigenfunction accurately with the spectral numerical methods used here

and by Pierrehumbert and Widnall. Fortunately, resolution sufficient to accurately represent the base

flow (the Stuart vortices) is adequate to obtain a good approximation to the eigenvalue, regardless of

how poorly the eigenfunction is resolved. This is reflected in the fact that the eigenvalues computed

here and by Pierrehumbert and Widnall agree, though the current computations had 16 times better

resolution in both coordinate directions. Another difficulty with these stability computations is that the

Stuart vortices are not a good approximation to a rolling-up mixing layer (they have too much vorticity

in the braid region, as also noted by Browand and Weidman (1976)), and they do not evolve in time as

a mixing layer does.

These problems associated with the stability analysis of Pierrehumbert and Widnall were avoided

in the linear perturbation computations performed by Corcos and Lin (1984). In their computations,

three-dimensional infinitesimal disturbances were allowed to evolve in the presence of a rolling-up

two-dimensional mixing layer at finite Reynolds number. The initial conditions were similar to those

used in our OBLIN simulation (sec. 4.4.1), and the Reynolds number as defined here was 100. The

calculations of Corcos and Lin show that by the time the mixing layer has rolled up, the three-dimensional

perturbation exhibits the bending core characteristic of the translative instability, as well as rib vortices

in the braid region. We have performed a similar calculation using parameters and initial perturbations

identical to the STI disturbance cases reported in sections 4.2 and 4.3.1, except that an infinitesimal

amplitude was used for the three-dimensional disturbance. This calculation can, therefore, be directly

compared with the ROLLUP, LOROLL, and HIROLL simulations. Contour plots of the infinitesimal-

perturbation streamwise vorticity in the RP and the roller core plane (CP) are shown in figure 51. These

should be compared to figures l l(b) and 17(b) for the ROLLUP simulation. The similarity between

the linear perturbation structures and those from ROLLUP is truly remarkable. The only nonlinear

effects visible in ROLLUP at this time (Tr) are the collapsing ribs and the forming cups (visible in the
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Figure 51. Contour plots of streamwise vorticity in the RP and CP for the three-dimensional linear

perturbation at t = 9.8 (7"r = 10.1). The contour increment is 0.4Fz(t = 0)/Fr, where Fr is the

streamwise circulation (Fz) for the ROLLUP case (sec. 4.2) at t = 0. Note that this scaling makes

(a) and (b) exactly comparable to figures 11 (b) and 17(b), respectively. Tic marks are at 6° intervals.

perturbation spanwise vorticity, not shown). The remaining features (e.g., sub-ribs and the opposite-

signed streamwise vorticity in the core) of the linear perturbation are identical to those in ROLLUP.

Also, the quadrupoles identified in section 4.2 as the cause of the vortex stretching leading to the "cups"

are present in the linear perturbation.

The circulation of the rib vortices is an important measure of the three-dimensionality of the flow.

The evolution of this circulation for the linear perturbation discussed above is shown in figure 52(a) along

with that for the three directly comparable cases. In ROLLUP, the evolution of the circulation is

consistent with linear theory until To. This is consistent with the observations in section 4.2 that the

evolution is governed by the removal of spanwise vorticity from the braid region, an essentially two-

dimensional process. In LOROLL the circulation evolves according to linear theory even after "ro, and

in HIROLL the evolution is nonlinear before or. The occurrence of the plateau in circulation of the

linear perturbation before To suggests that the energy in the three-dimensional perturbation may not

be growing at this time. The evolution of the amplitude of the entire three-dimensional perturbation

(A3D = _ A21) and the mid-braid plane (MP) circulation (FzMP) are shown in figure 52(b). The

early-time increase in A3D is associated with the corrugation of the layer's spanwise vorticity by the

perturbation streamwise vorticity (this is also the cause of the early-time increase in AOl in fig. 7).

This corrugation is necessary to support circulation growth (see sec. 4.2.3), and it is only after A3D has

leveled off that the circulation begins to increase. At about t = 10 the perturbation amplitude begins to

grow again. This time corresponds to that of the initial introduction of new spanwise vorticity into the

braid region as indicated by the growth of rib circulation away from the MP (see fig. 14). The growth

of A3D appears to be exponential only for late times. From t ----10 to t = 25, A3D and/-,MP grow by

approximately the same factor, indicating that the ribs are strengthening at a rate commensurate with

the rest of the perturbation.
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Figure 52. Time development of (a) F MP of the linear perturbation and nonlinear flows, and (b) A3D

and/"z MP of the linear perturbation. All quantities are normalized by their values at t = 0.

As pointed out by Corcos and Lin (1984), the analysis of the linear stability of an evolving base

flow is more subtle than that for a nonevolving flow. One can safely say that an evolving base flow is

unstable if there are linear perturbations that exhibit long-term exponential growth. By this definition,

it appears that the translative instability is in fact an instability for this evolving base flow. 23 However,

from the discussion above there is a qualitative difference in the behavior of the three-dimensional

perturbation before and after To. The perturbations used here are apparently not unstable until roller

spanwise vorticity is brought back into the braid region. Some perturbations could also be unstable

before this time by another mechanism (e.g., the large-spanwise-wavelength oblique disturbances used

by Corcos and Lin). It is the late-time instability of the oversaturated roller that can be identified with

the translative instability. This is consistent with the results of Pierrehumbert and Widnall since the

Stuart vortices have significant spanwise vorticity in the braid region, like the oversaturated rollers.

Note that this was not evident in the calculations of Corcos and Lin, because at low Reynolds numbers

the plateau in the circulation evolution does not occur. The identification of the translative instability

as an instability of the late-time oversaturated rollers has two important consequences. First, most of

the results in section 4 (the presence of cups, behavior of rib vortex lines, etc.) are for times only up to

and shortly after to, so little growth caused by the translative instability has occurred for these results.

Thus, the degree of three-dimensionality in the flow is determined by the degree of three-dimensionality

specified in the initial conditions. Second, as will be seen in Part 2, pairing of the rollers delays

oversaturation and the associated return of spanwise vorticity to the braid region. Pairing is therefore

expected to delay the onset of the translative instability. This is in part responsible for the observed

"suppression" of three-dimensionality by pairing (Corcos and Lin 1984; Metcalfe et al. 1987).

Both Pierrehumbert and Widnall, and Corcos and Lin (1984) observed that the three-dimensional

perturbation energy was concentrated in the spanwise roller. This led them to speculate that the transla-

tive instability was in essence an instability of the roller core. Corcos and Lin state that "it is likely that

the strong streamwise vorticity that appears and persists in the central part of the braids.., is caused

early on by the original shear instability rather than the translative instability, and thereafter leads a fossil

life." Following this reasoning, various researchers have interpreted their experiments or computations

as evidence of a core instability (e.g., Nygaard and Glezer 1990), or alternatively, as a braid instability

(e.g., Ashurst and Meiburg 1988; Lasheras and Choi 1988; Bell and Mehta 1989b). The term "braid

23However, the flow-evolution time studied here is limited, so one could argue this point.
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instability" is usuallyusedin referenceto the mechanisminvestigatedby Lin and Corcos(1984),by
which the rib vorticescollapse(seesec.4.3.1). It is clear from the resultspresentedhere that this
distinction (or perhapscontroversy)betweentwo "instability" mechanismsis unfounded. The energy
in the perturbationis concentratedin the core,but the exponentialgrowth of the perturbationappears
to occuronly as spanwisevorticity is broughtback into the braid region,allowing the rib circulation
to grow. Further, as discussedin section4.2.4, the presenceof the rib vortices is requiredto form
the quadrupolein theroller core,which leadsto the growthof three-dimensionalityin thecore. Thus,
the descriptionof the translativeinstability as an instability of the roller is incomplete. On the other
hand,identificationof theLin andCorcoscollapsemechanismwith a braid instability is not appropriate
(they do not makesuchan association).The growth of the fib vorticesrequiresthe introduction of
three-dimensionalspanwisevorticity into the braidregion from the roller, becausean arrayof vortices
in a planestrainfield is not in itself unstable.Collapseof the vorticesis a nonlinearprocessthat does
not increasetheir strength.The translativeinstabilitymust thereforebeviewedasan instability of the
two-dimensionalmixing layer asa whole (rollersandbraids).

6 CONCLUSIONS

The evolution of three-dimensional, temporally evolving, plane mixing layers starting from "clean"

initial perturbations and progressing through the first Kelvin-Helrnholtz roll-up has been studied by direct
numerical simulation. The "fibs" and "rollers" observed in experiments were found to be associated

with a "typical" evolution of the layer, and their interaction has been studied in detail. New vortical

structures, here referred to as "cups," "hoops," and "wisps," have been identified in the simulations as

well. The sensitivity of the mixing layer to changes in initial conditions has been studied by varying

the inital condition parameters, and this has resulted in an understanding of the variability of the vortex

structures. This, in turn, provides a basis for speculation about the nature and strength of the disturbances

present in experimental mixing layers.

The origin of the typical vortex structures can be understood by examining the linear evolution of a

three-dimensional perturbation on an evolving two-dimensional base flow. Such calculations suggest that

the onset of three-dimensionality and the appearance of rib vortices are not the results of either a "braid"

instability or a "core instability," as has often been speculated, but rather are a natural consequence of

the evolution of the two-dimensional base flow as a whole.

The results presented in sections 5.3 and 4.3.1 demonstrate the remarkable predictive power of

two analytical (or quasi-analytical) tools for this flow: the linear perturbation analysis of Corcos and

Lin (1984) and the nonlinear streamwise vortex-collapse analysis of Lin and Corcos (1984). The linear

perturbation analysis allows one to predict the degree of three-dimensionality and, to a large extent, the

structure of the three-dimensionality for flows even into the nonlinear regime. It is used in Part 2 to

predict the strength of the fib vortices at the beginning of a pairing. The vortex-collapse analysis of Lin

and Corcos (1984) was seen in section 4.3.1 to accurately predict the onset and evolution of one of the

important nonlinearities of the three-dimensional flow (i.e., the collapse of the rib vortices).

These tools cannot, however, provide a complete description of the three-dimensionality associated

with the early evolution of a mixing layer. In particular, the linear analysis of Corcos and Lin (1984)

cannot describe flow behavior that is essentially nonlinear (e.g., the formation of cup vorticity, the
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evolution of vortex lines, and the collapseof the rib vortices). The rib-vortex collapseis addressed
by Lin and Corcos(1984), but their analysiscannotpredict the circulation growth observedin the
oversaturatedstate,the deformationof the rib vorticesobservedhere,or the interactionof the ribs
with the rollers. The insightsobtainedfrom the numericalresultspresentedhere,supplementedby the
analyticalmodels,provide a comprehensiveunderstandingof the evolution of the planemixing layer
in the absenceof pairing. In Part2, knowledgeof this early mixing-layerevolutionwill be critical to
understandingpairing andthetransitionto turbulence.
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